催化学报 ›› 2026, Vol. 80: 227-236.DOI: 10.1016/S1872-2067(25)64831-5

• 论文 • 上一篇    下一篇

表面氟化诱导金属-氟键促进光电化学CH3OH选择性氧化制备HCHO

李书涛a, 曾可维b, 李子暄b, 黎相明b, 陈芳a, 黄洪伟a,*()   

  1. a中国地质大学(北京)材料科学与工程学院, 矿物材料国家专业实验室, 非金属矿产与固废资源材料化利用北京市重点实验室, 地质碳储与资源低碳利用教育部工程研究中心, 北京 100083
    b广东石油化工学院材料科学与工程学院, 广东茂名 525000
  • 收稿日期:2025-05-30 接受日期:2025-08-08 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 黄洪伟
  • 基金资助:
    国家自然科学基金(52472258);国家自然科学基金(52272244);中央高校基本科研业务费专项资金(2652022202)

Metal-F bond induced by surface fluorination promotes photoelectrochemical selective oxidation of CH3OH to HCHO

Shutao Lia, Kewei Zengb, Zixuan Lib, Xiangming Lib, Fang Chena, Hongwei Huanga,*()   

  1. aEngineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    bSchool of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
  • Received:2025-05-30 Accepted:2025-08-08 Online:2026-01-18 Published:2026-01-05
  • Contact: Hongwei Huang
  • Supported by:
    National Natural Science Foundation of China(52472258);National Natural Science Foundation of China(52272244);Fundamental Research Funds for the Central Universities(2652022202)

摘要:

甲醛(HCHO)作为一种重要化工原料, 广泛应用于纺织、化工及医药等领域. 光电化学(PEC)甲醇(CH3OH)氧化为温和条件下高效合成HCHO提供了一条极具前景的反应路径, 有效克服传统热催化 方法常伴随的高能耗和苛刻反应条件等局限性. BiVO4(BVO)光阳极因其较高的光电流密度上限及合适的价带位置, 成为PEC CH3OH氧化制备HCHO的理想候选材料. 但是, 由于PEC CH3OH氧化过程中产物的多样性, 导致了体相BVO光阳极PEC CH3OH氧化制备HCHO较低的选择性和产率. 因此如何对BVO光阳极进行改性, 提升其CH3OH氧化制备HCHO的选择性和产率是本文研究的重点.

近年来, BVO光阳极表面氟化策略在PEC氧化水和有机物中得到一定的应用. 氟离子凭借其强电负性及与氧离子相近的离子半径, 通过取代氧位点形成离子性更强、极化程度更高的金属‒氟键. 这种表面氟化策略不仅能有效抑制光生载流子复合, 还可以定向调控表面吸附有机物化学键的活化和裂解. 本文通过浸渍法和光电化学处理法相结合制备了表面氟化的BVO光阳极, 并将其应用到PEC CH3OH氧化, 实现了HCHO选择性和产率的大幅度提升. PEC CH3OH氧化性能最佳的光阳极(BVO-F2)在1.2 VRHE电位下获得3.24 mA cm‒2的光电流密度, 相比体相BVO光阳极(1.66 mA cm‒2)提升约两倍. 此外, 在0.8 VRHE电压下, 该光阳极PEC CH3OH氧化制备HCHO的法拉第效率达90.7%, 连续反应5 h性能保持稳定, 最终累积生成98.12 µmol HCHO. 光电化学测试表明, 表面氟化的光阳极光生载流子分离能力增强, 这促进了光阳极PEC CH3OH氧化光电流密度的提升. 此外, 活性物种的测试证明, 光生空穴是促进光阳极PEC CH3OH氧化为HCHO的主要活性物种. 高分辨透射电镜(HRTEM)线性扫描的结果证明, 氟离子较强的电负性能够取代氧离子, 进而形成金属‒氟键. 结合HRTEM的结果, 构建了理论计算的模型. 理论计算结果揭示金属-F的形成促进BiVO4光阳极对CH3OH的吸附并通过O-H···F氢键的形成促进了O-H的拉伸. 同时, 金属-F键还促进了C-H键的活化以及HCHO的脱附, 最终促进了HCHO选择性的提升.

综上, 本工作通过表面氟化的方法提升了BVO光阳极PEC CH3OH氧化制备HCHO的选择性和速率, 突出了表面氟化在调控电荷转移动力学与催化反应热力学过程的关键作用. 本文为PEC有机小分子物质的定向转化和反应速率的提升提供了新思路.

关键词: BiVO4光阳极, 金属-氟键, 光电化学甲醇氧化, 表面氟化, C-H键活化

Abstract:

Photoelectrochemical (PEC) CH3OH oxidation provides a promising path to HCHO synthesis instead of thermal catalytic method. However, it suffers the low conversion rate and selectivity. Here, surface fluorinated BiVO4 photoanodes were fabricated by combined immersion method and PEC treatment for selective CH3OH oxidation into HCHO. The surface fluorination simultaneously improved the reaction kinetics and selectivity for HCHO synthesis on BiVO4 photoanode, where the formation of metal‒F bonds promoted the CH3OH molecules adsorption, O‒H bond stretching, C‒H bond activation, and eventually HCHO desorption, resulting in excellent HCHO production with high selectivity. The optimal photoanode BVO-F2 obtained a photocurrent density of 3.24 mA cm-2 at 1.2 VRHE, which is about twice that of the bulk BVO photoanode (1.66 mA cm-2). In addition, at 0.8VRHE, the Faraday efficiency of BVO-F2 PEC CH3OH oxidation for HCHO synthesis reached 90.7%, and maintained relatively stable performance in continuous oxidation for 5 h, and finally accumulated 98.12 µmol HCHO. This work illustrates the potential of surface functionalization in PEC conversion of small molecules, as well as in regulating charge dynamics and catalytic reaction thermodynamics.

Key words: BiVO4 photoanode, Metal?F bond, Photoelectrochemical CH3OH oxidation, Surface fluorination, C?H activation