催化学报 ›› 2025, Vol. 79: 78-90.DOI: 10.1016/S1872-2067(25)64848-0

• 论文 • 上一篇    下一篇

优化Cu2O/Cu异质结界面处活性氢产生的动力学路径用于增强硝酸盐电还原产氨

陈羲a,1, 金伟a,1, 钟信宇c, 林虹巧b, 丁俊杰d, 刘欣予a, 王慧a, 陈法升a, 熊衍b,*(), 丁长春a,*(), 金钟b,*(), 江明航a,b,*()   

  1. a西华大学理学院化学系, 四川成都610039
    b南京大学化学化工学院, 绿色化学与工程研究院, 天长新材料与能源技术研发中心, 苏州市新能源材料与器件绿色智能制造重点实验室, 江苏省清洁能源催化与智能绿色化工重点实验室, 介观化学教育部重点实验室, 高性能高分子材料与技术教育部重点实验室, 配位化学国家重点实验室, 江苏南京210023
    c中国科学院上海应用物理研究所, 上海201800
    d重庆大学物理学院量子材料与器件中心, 重庆401331
  • 收稿日期:2025-07-04 接受日期:2025-08-23 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 熊衍,丁长春,金钟,江明航
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22561160129);国家自然科学基金(22479074);国家自然科学基金(22475096);四川省自然科学基金(2023NSFSC1074);四川省自然科学基金(2023NSFSC0909);西华大学人才引进项目(Z222051);装备预研与教育部联合基金一般项目(8091B02052407);江苏省基础研究计划重点项目(BK20253008);江苏省自然科学基金(BK20240400);江苏省自然科学基金(BK20241236);江苏省科技重大专项(BG2024013);江苏省科技成果转化专项基金(BA2023037);江苏省学位与研究生教育改革项目(JGKT24_C001);苏州市关键核心技术公开竞赛项目(SYG2024122);苏州实验室开放研究基金(SZLAB-1308-2024-TS005);郴州国家可持续发展议程创新示范区重大科技攻关项目(2023sfq11)

Optimized kinetic pathways of active hydrogen generation at Cu2O/Cu heterojunction interfaces to enhance nitrate electroreduction to ammonia

Xi Chena,1, Wei Jina,1, Xinyu Zhongc, Hongqiao Linb, Junjie Dingd, Xinyu Liua, Hui Wanga, Fasheng Chena, Yan Xiongb,*(), Changchun Dinga,*(), Zhong Jinb,*(), Minghang Jianga,b,*()   

  1. aDepartment of Chemistry, School of Science, Xihua University, Chengdu 610039, Sichuan, China
    bState Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Clean Energy Catalysis and Intelligent Green Chemical Engineering, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technologies Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
    c Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    dCollege of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
  • Received:2025-07-04 Accepted:2025-08-23 Online:2025-12-18 Published:2025-10-27
  • Contact: Yan Xiong, Changchun Ding, Zhong Jin, Minghang Jiang
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22561160129);National Natural Science Foundation of China(22479074);National Natural Science Foundation of China(22475096);Natural Science Foundation of Sichuan Prov-ince(2023NSFSC1074);Natural Science Foundation of Sichuan Prov-ince(2023NSFSC0909);Talent Introduction Plan of Xihua University(Z222051);General Project of the Joint Fund of Equipment Pre-research and the Ministry of Education(8091B02052407);Fundamental Reaearch Program Key Project of Jiangsu Province(BK20253008);Natural Science Foundation of Jiangsu Province(BK20240400);Natural Science Foundation of Jiangsu Province(BK20241236);Science and Technology Major Project of Jiangsu Province(BG2024013);Scientific and Technological Achievements Transformation Special Fund of Jiangsu Province(BA2023037);Academic Degree and Postgraduate Education Reform Project of Jiangsu Province(JGKT24_C001);Key Core Technology Open Competition Project of Suzhou City(SYG2024122);Open research fund of Suzhou Laboratory(SZLAB-1308-2024-TS005);Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone Provincial Special Project(2023sfq11)

摘要:

氨(NH3)是氮肥、医药及其他重要工业产品生产过程中的关键基础化学品. 本文旨在通过电催化硝酸盐还原反应(NITRR), 将环境中的硝酸盐污染物转换为具有工业附加值的NH3, 既解决了硝酸盐污染的问题, 又实现了氮资源的循环利用. 然而, 电化学NITRR涉及复杂的多电子转移反应步骤和缓慢的动力学过程. 同时, 竞争性析氢反应(HER)和含氮副产物的产生, 导致额外的电能消耗, 降低了NITRR产NH3的选择性和能量效率. 因此, 设计和制备具有高选择性NITRR电催化剂, 仍然是电催化领域的热点研究课题. 目前, 铜(Cu)基催化剂由于其独特的外层电子构型(3d10), 是实现高选择性电催化NITRR为NH3最具潜力的电极材料. 然而, Cu基材料对水分子活化产活性氢(*H)的能力较弱, 从而阻碍了电化学NITRR过程中所必需的*H产生的动力学过程. 鉴于钴(Co)基催化剂有利于水分子活化产生*H, 故利用Co掺杂Cu基催化剂调节电化学NITRR过程中*H浓度, 以提升NH3的产率和选择性是本文的主要研究思路.
本文通过一种简单、快速、环境友好且无能耗的化学置换法, 制备了一系列具有不同Co掺杂浓度的纳米枝晶状Cu2O/Cu异质结材料(Cox-Cu2O/Cu, x = 0.05, 0.10或0.34). 通过调控Co的掺杂浓度, 成功实现了Cu2O/Cu异质结界面处Co掺杂形式从原子态向单质态的可控转变. 实验结合理论计算研究表明, 掺杂原子态Co增强了硝酸根反应物种在催化剂表面的吸附强度, 而掺杂单质态Co有利于*H的生成. *H是NITRR合成NH3的关键活性物种, 其浓度对法拉第效率(FENH3)有显著影响. 具体来说, *H的浓度不足会减缓NITRR产NH3的动力学过程, 而浓度过高则会诱发剧烈的HER副反应, 导致产NH3选择性降低. 因此, 调控Cu基催化剂表面的*H浓度, 使其在NITRR产NH3过程中达到产生和消耗之间的动态平衡是至关重要的. 因此, 通过对纳米枝晶状Cu2O/Cu异质结材料中掺杂Co浓度的调节, 实现了Co掺杂形式(原子态和单质态)比例的调控, 从而能有效地调节枝晶状Cu2O/Cu异质结材料界面处*H的浓度. 得益于Cu2O/Cu异质结界面处*H浓度的调节, 使得电化学NITRR产NH3过程中*H的产生和消耗之间维持了动态平衡, 从而显著促进了电化学NITRR产NH3的动力学过程. 基于上述优势, 所制Co0.10-Cu2O/Cu催化剂在-0.7 V vs. RHE的电压下, 电化学NITRR为NH3的产率为290.0 μmol·h-¹·mg-¹cat, FENH3为86.2%, 其性能显著高于初始的Cu2O/Cu催化剂的性能(NH3的产率为51.0 μmol·h-¹·mg-¹cat, FENH3 = 32.5%). 此外, Co0.10-Cu2O/Cu催化剂表现出显著的稳定性, 在连续的循环稳定性测试和长时间耐久性评估中, 其催化活性无明显衰减.
综上, 本工作通过一种简单快速的化学置换法在Cu2O/Cu异质结界面处掺杂不同浓度的Co, 有效调节了催化剂表面的*H浓度, 进而提升了电催化硝酸盐还原产NH3的选择性, 为后续设计和合成高效Cu基催化剂以及优化催化剂表面*H产生的动力学路径以提升NITRR性能, 提供了一定的实验和理论参考.

关键词: 活性氢浓度调节, 调控Co的掺杂形式, 电催化硝酸根还原, 电催化合成氨

Abstract:

In this paper we report the preparation of nano-dendritic Cu2O/Cu heterojunctions doped with varying concentrations of cobalt through a convenient, energy-consumption-free, and environmentally friendly chemical replacement method. The analysis results reveal that the incorporation of cobalt in its atomic form enhances the adsorption of nitrate species onto the catalyst surface, whereas doping with metallic cobalt promotes the production of active hydrogen (*H). By adjusting the doping concentration of cobalt, we effectively control its doping form (atomic and metallic states) on the surface of dendritic copper, thereby enabling controllable modulation of the active hydrogen concentration on the catalyst surface. By ensuring sufficient consumption of *H during the NITRR process while avoiding excessively high concentrations that could trigger detrimental hydrogen evolution reaction side reactions, this approach remarkably enhances the selectivity of ammonia synthesis in NITRR. This study offers an effective approach to regulate the *H concentration on the surface of the catalyst through adjusting the metal doping form, thereby improving the performance of ammonia synthesis from NITRR.

Key words: Modulation of the active hydrogen concentration, Adjusting the Co doping form, Electrocatalytic nitrate reduction reaction, Electrocatalytic ammonia synthesis