Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (3): 508-523.DOI: 10.1016/S1872-2067(11)60515-9
• Special Column on Progress in Catalysis in China during • Previous Articles Next Articles
SUN Xiaoyana, WANG Ruia,b, SU Dangsheng a
Received:
2012-11-10
Revised:
2013-01-06
Online:
2013-04-02
Published:
2013-04-03
Supported by:
This work was supported by the National Natural Science Foundation of China (21133010, 21103203, and 50921004), the National Basic Research Program of China (973 Program, 2011CBA00504), and the Thousand Talents Program of the Central Organization Department.
SUN Xiaoyan, WANG Rui, SU Dangsheng. Research progress in metal-free carbon-based catalysts[J]. Chinese Journal of Catalysis, 2013, 34(3): 508-523.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(11)60515-9
[1] Jiang H F, Wang Y G, Liu H L, Liu P. Chin J Org Chem (江焕峰, 王玉刚, 刘海灵, 刘鹏. 有机化学), 2004, 24: 1513 [2] Yang G, Ma Y, Xu J. J Am Chem Soc, 2004, 126: 10542 [3] Chen D J, Wang Y T, Klankermayer J. Angew Chem, Int Ed, 2010, 49: 9475 [4] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169 [5] Figueiredo J L, Pereira M F R. Catal Today, 2010, 150: 2 [6] Mestl G, Maksimova N I, Keller N, Roddatis V V, Schlögl R. Angew Chem, Int Ed, 2001, 40: 2066 [7] Keller N, Maksimova N I, Roddatis V V, Schur M, Mes[8] Zhao T J, Sun W Z, Gu X Y, Rönning M, Chen D, Dai Y C, Yuan W K, Holmen A. Appl Catal A, 2007, 323: 135 [9] Delgado J J, Su D S, Rebmann G, Keller N, Gajovic A, Schlögl R. J Catal, 2006, 244: 126 [10] Li P, Li T, Zhou J H, Sui Z J, Dai Y C, Yuan W K, Chen D. Microporous Mesoporous Mater, 2006, 95: 1 [11] Delgado J J, Chen X W, Su D S, Hamid S B A, Schlögl R. J Nanosci Nanotech, 2007, 7: 3495 [12] Su D S, Maksimova N, Delgado J J, Keller N, Mestl G, Ledoux M J, Schlögl R. Catal Today, 2005, 102-103: 110 [13] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165 [14] Frank B, Rinaldi A, Blume R, Schlögl R, Su D S. Chem Mater, 2010, 22: 4462 [15] Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322: 73 [16] Frank B, Zhang J, Blume R, Schlögl R, Su D S. Angew Chem, Int Ed, 2009, 48: 6913 [17] Pereira M F R, órfão J J M, Figueiredo J L. Appl Catal A, 1999, 184: 153 [18] Maciá-Agulló J A, Cazorla-Amorós D, Linares-Solano A, Wild U, Su D S, Schlögl R. Catal Today, 2005, 102-103: 248 [19] Zhang J, Su D S, Zhang A H, Wang D, Schlögl R, Hébert C. Angew Chem, Int Ed, 2007, 46: 7319 [20] Macia-Agullo J A, Cazorla-Amoros D, Linares-Solano A, Wild U, Su D S, Schlögl R. 1st International Symposium on Carbon for Catalysis (Carbo-Cat-1). Switzerland: Elsevier, 2004. 248 [21] Silva I F, Vital J, Ramos A M, Valente H, do Rego A M B, Reis M J. Carbon, 1998, 36: 1159 [22] Liu X, Su D S, Schlögl R. Carbon, 2008, 46: 547 [23] Frank B, Morassutto M, Schomacker R, Schlögl R, Su D S. ChemCatChem, 2010, 2: 644 [24] Muradov N. Catal Commun, 2001, 2: 89 [25] Muradov N, Smith F, T-Raissi A. Catal Today, 2005, 102: 225 [26] Huang L P, Santiso E E, Nardelli M B, Gubbins K E. J Chem Phys, 2008, 128: 7 [27] Lee S Y, Kwak J H, Han G Y, Lee T J, Yoon K J. Carbon, 2008, 46: 342 [28] Xie H, Wu Z L, Overbury S H, Liang C D, Schwartz V. J Catal, 2009, 267: 158 [29] Zhang J, Su D S, Blume R, Schlögl R, Wang R, Yang X G, Gajovic A. Angew Chem, Int Ed, 2010, 49: 8640 [30] Liu X, Frank B, Zhang W, Cotter T P, Schlögl R, Su D S. Angew Chem, Int Ed, 2011, 50: 3318 [31] Frank B, Blume R, Rinaldi A, Trunschke A, Schlögl R. Angew Chem, Int Ed, 2011, 50: 10226 [32] Besson M, Blackburn A, Gallezot P, Kozynchenko O, Pigamo A, Tennison S. Top Catal, 2000, 13: 253 [33] Kuang Y B, Islam N M, Nabae Y, Hayakawa T, Kakimoto M. Angew Chem, Int Ed, 2010, 49: 436 [34] Kang Z H, Wang E B, Mao B D, Su Z M, Gao L, Niu L, Shan H Y, Xu L. Appl Catal A, 2006, 299: 212 [35] Begin D, Ulrich G, Amadou J, Su D S, Pham-Huu C, Ziessel R. J Mol Catal A, 2009, 302: 119 [36] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Dome K. Angew Chem, Int Ed, 2004, 43: 2955 [37] Peng F, Zhang L, Wang H J, Lü P, Yu H. Carbon, 2005, 43: 2397 [38] Yu H, Jin Y G, Li Z L, Peng F, Wang H J. J Solid State Chem, 2008, 181: 432 [39] Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J, Zheng W X. Angew Chem, Int Ed, 2011, 50: 3978 [40] Yang S X, Li X, Zhu W P, Wang J B, Descorme C. Carbon, 2008, 46: 445 [41] Aguilar C, Garcia R, Soto-Garrido G, Arriagada R. Appl Catal B, 2003, 46: 229 [42] Gao Y J, Ma D, Wang C L, Guan J, Bao X H. Chem Commun, 2011, 47: 2432 [43] Wang X Q, Liu R, Waje M M, Chen Z W, Yan Y S, Bozhilov K N, Feng P Y. Chem Mater, 2007, 19: 2395 [44] Villa A, Tessonnier J P, Majoulet O, Su D S, Schlögl R. Chem Commun, 2009: 4405 [45] Yuan X L.[PhD Dissertation]. Changchun: Jilin Univ (袁晓玲.[博士学位论文]. 长春: 吉林大学), 2012 [46] Yuan X L, Zhang M, Chen X D, An N H, Liu G, Liu Y, Zhang W X, Yan W F, Jia M J. Appl Catal A, 2012, 439-440: 149 [47] Kan-nari N, Okamura S, Fujita S, Ozaki J, Arai M. Adv Synth Catal, 2010, 352: 1476 [48] Dreyer D R, Jia H P, Todd A D, Geng J X, Bielawski C W. Org Biomol Chem, 2011, 9: 7292 [49] Jia H P, Dreyer D R, Bielawski C W. Tetrahedron, 2011, 67: 4431 [50] Kumar A V, Rao K R. Tetrahedron Lett, 2011, 52: 5188 [51] Verma S, Mungse H P, Kumar N, Choudhary S, Jain S L, Sain B, Khatri O P. Chem Commun, 2011, 47: 12673 [52] Chauhan S M S, Mishra S. Molecules, 2011, 16: 7256 [53] Dreyer D R, Jarvis K A, Ferreira P J, Bielawski C W. Polym Chem, 2012, 3: 757 [54] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233 [55] Dreyer D R, Jia H P, Bielawski C W. Angew Chem, Int Ed, 2010, 49: 6813 [56] Su C L, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Loh K P. Nature Commun, 2012, 3: 1298 [57] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew Chem, Int Ed, 2006, 45: 4467 [58] Goettmann F, Fischer A, Antonietti M, Thomas A. Chem Commun, 2006: 4530 [59] Goettmann F, Fischer A, Antonietti M, Thomas A. New J Chem, 2007, 31: 1455 [60] Su F Z, Antoniettia M, Wang X C. Catal Sci Technol, 2012, 2: 1005 [61] Wang Y, Wang X C, Antonietti M. Angew Chem, Int Ed, 2012, 51: 68 [62] Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Angew Chem, Int Ed, 2010, 49: 3356 [63] Wang Y, Li H R, Yao J, Wang X C, Antonietti M. Chem Sci, 2011, 2: 446 [64] Shao Y, Sui J, Yin G, Gao Y. Appl Catal B, 2008, 79: 89 [65] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760 [66] Ewels C P, Glerup M J, Nanosci J. Nanotechnol, 2005, 5: 1345 [67] Tang Y, Allen B L, Kauffman D R, Star A. J Am Chem Soc, 2009, 131: 13200 [68] Biddinger E J, von Deak D, Ozkan U S. Top Catal, 2009, 52: 1566 [69] Matter P H, Ozkan U S. Catal Lett, 2006, 109: 115 [70] Liu R L,Wu D Q, Feng X L, Müllen K. Angew Chem, Int Ed, 2010, 49: 2565 [71] Dai L M, Chang D W, Baek J B, Lu W. Small, 2012, 8: 1130 [72] Wang H, Cote R, Faubert G, Guay D, Dodelet J P. J Phys Chem B, 1999, 103: 2042 [73] Matter P H, Zhang L, Ozkan U S. J Catal, 2006, 239: 83 [74] Matter P H, Ozkan U S. Catal Lett, 2006, 109: 115 [75] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4: 1321 [76] Strelko V V, Kartel N T, Dukhno I N, Kuts V S, Clarkson R B, Odintsov B M. Surf Sci, 2004, 548: 281 [77] Stohr B, Boehm H P, Schlögl R. Carbon, 1991, 29: 707 [78] Jarrah N A, Li F, Ommen J, Lefferts L. J Mater Chem, 2005, 15: 1946 [79] Yang S B, Feng X L, Wang X C, Mullen K. Angew Chem, Int Ed, 2011, 50: 5339 [80] Ozaki J, Tanifuji S, Furuichi A, Yabutsuka K. Electrochim Acta, 2010, 55: 1864 [81] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76 [82] Wang Y, Wang X C, Antonietti M. Angew Chem, Int Ed, 2012, 51: 68 [83] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew Chem, Int Ed, 2010, 49: 441 [84] Yadav R K, Baeg J O, Oh G H, Park N J, Kong K J, Kim J, Hwang D W, Biswas S K. J Am Chem Soc, 2012, 134: 11455 [85] Jarrah N A, Li F, Ommen J, Lefferts L. J Mater Chem, 2005, 15: 1946 [86] Su D S, Chen X W, Liu X, Delgado J J, Schlögl R. Adv Mater, 2008, 20: 3597 [87] Rinaldi A, Zhang J, Mizera J, Girgsdies F, Wang N, Hamid S, Schlögl R, Su D S. Chem Commun, 2008: 6528 [88] García-Bordejé E, Kvande I, Chen D, Rönning M. Carbon, 2007, 45: 1828 [89] Vanhaecke E, Ivanova S, Deneuve A, Ersen O, Edouard D, Wine G, Nguyen P, Pham C, Pham-Huu C. J Mater Chem, 2008, 18: 4654 [90] Liu R, Mahurin S M, Li C, Unocic R R, Idrobo J C, Gao H J, Pennycook S J, Dai S. Angew Chem, Int Ed, 2011, 50: 6799 [91] Zhang J, Wang R, Liu E Z, Gao X F, Sun Z H, Xiao F S, Frank G, Su D S. Angew Chem, Int Ed, 2012, 51: 7581 [92] Chizari K, Deneuve A, Ersen O, Florea I, Liu Y, Edouard D, Janowska I, Begin D, Pham-Huu C. ChemSusChem, 2012, 5: 102 |
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[2] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[3] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[4] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[5] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[6] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[7] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[8] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[9] | Yu Shang, Yunxuan Ding, Peili Zhang, Mei Wang, Yufei Jia, Yunlong Xu, Yaqing Li, Ke Fan, Licheng Sun. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413. |
[10] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[11] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[12] | Hui Zhao, Qinyi Mao, Liang Jian, Yuming Dong, Yongfa Zhu. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms [J]. Chinese Journal of Catalysis, 2022, 43(7): 1774-1804. |
[13] | Jie He, Xuandong Wang, Shangbin Jin, Zhao-Qing Liu, Mingshan Zhu. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity [J]. Chinese Journal of Catalysis, 2022, 43(5): 1306-1315. |
[14] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
[15] | Guoxing Jiang, Longhai Zhang, Wenwu Zou, Weifeng Zhang, Xiujun Wang, Huiyu Song, Zhiming Cui, Li Du*. Precise and controllable tandem strategy triggering boosted oxygen reduction activity [J]. Chinese Journal of Catalysis, 2022, 43(4): 1042-1048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||