Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (3): 524-535.DOI: 10.1016/S1872-2067(12)60548-8
• Special Column on Progress in Catalysis in China during • Previous Articles Next Articles
ZHENG Yun, PAN Zhiming, WANG Xinchen
Received:
2012-12-19
Revised:
2013-01-30
Online:
2013-04-02
Published:
2013-04-03
Supported by:
This work was supported by the National Basic Research Program of China (973 Program, 2013CB632405) and the National Natural Science Foundation of China (21033003 and 21173043).
ZHENG Yun, PAN Zhiming, WANG Xinchen. Advances in photocatalysis in China[J]. Chinese Journal of Catalysis, 2013, 34(3): 524-535.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60548-8
[1] Fujishima A, Honda K. Nature, 1972, 238: 37 [2] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Adv Mater, 2012, 24: 229 [3] Jin Z S. Acta Energiae Solaris Sinica, 1982, 3: 179 [4] Gao F, Li S B, Chen Y W. Acta Energiae Solaris Sinica, 1981, 4: 396 [5] Gao F, Li S B, He Y G. Acta Energiae Solaris Sinica, 1983, 1: 58 [6] Kiwi J, Grätzel M. Angew Chem, Int Ed, 1979, 18: 624 [7] Chen L H, Gu W Z, Zhu X W, Wang F D, Song Y Z, Hu J H. J Photochem Photobio A, 1993, 74: 85 [8] Li S B. J Mol Catal, 1988, 2: 217 [9] Wang Z H, Zhuang Q X. J Photochem Photobio A, 1993, 75: 105 [10] Wang S S, Wang Z H, Zhuang Q X. Appl Catal B, 1992, 1: 257 [11] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891 [12] Chen X B. Chin J Catal (陈晓波. 催化学报), 2009, 30: 839 [13] Jing L Q, Qu Y C, Wang B Q, Li S D, Jiang B J, Yang L B, Fu W, Fu H G, Sun J Z. Sol Energy Mater Sol Cells, 2006, 90: 1773 [14] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735 [15] Gao Z Q, Yang S G, Ta N, Sun C. J Hazard Mater, 2007, 145: 424 [16] Wang Y W, Zhang L Z, Deng K J, Chen X Y, Zou Z G. J Phys Chem C, 2007, 111: 2709 [17] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438 [18] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Phys Chem C, 2011, 115: 9136 [19] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638 [20] Liu S W, Yu J G, Jaroniec M. J Am Chem Soc, 2010, 132: 11914 [21] Pan J, Liu G, Lu G Q, Cheng H M. Angew Chem, Int Ed, 2011, 50: 2133 [22] Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. J Am Chem Soc, 2009, 131: 3152 [23] Guo W X, Zhang F, Lin C J, Wang Z L. Adv Mater, 2012, 24: 4761 [24] Yu J C, Zhang L Z, Yu J G. Chem Mater, 2002, 14: 4647 [25] Wang X C, Yu J C, Ho C M, Hou Y D, Fu X Z. Langmuir, 2005, 21: 2552 [26] Yu J G, Su Y R, Cheng B. Adv Funct Mater, 2007, 17: 1984 [27] Yu J G, Zhang L J, Cheng B, Su Y R. J Phys Chem C, 2007, 111: 10582 [28] Yu J G, Wang G H. J Phys Chem Solids, 2008, 69: 1147 [29] Yu H G, Yu J G, Cheng B, Lin J. J Hazard Mater, 2007, 147: 581 [30] Zhang F X, Zhang X, Chen J X, Liu Zh G, Gao W L, Jin R C, Guan N J. Chin J Catal (章福祥, 张秀, 陈继新, 刘智广, 高文亮, 金瑞彩, 关乃佳. 催化学报), 2003, 24: 877 [31] Wang P, Huang B B, Dai Y, Whangbo M H. Phys Chem Chem Phys, 2012, 14: 9813 [32] Yu J G, Dai G P, Huang B B. J Phys Chem C, 2009, 113: 16394 [33] Tong T Z, Zhang J L, Tian B Z, Chen F, He D N. J Hazard Mater, 2008, 155: 572 [34] Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Chem Mater, 2002, 14: 3808 [35] Yang P, Lu C, Hua N P, Du Y K. Mater Lett, 2002, 57: 794 [36] Li X Z, Li F B, Yang C L, Ge W K. J Photochem Photobiol A, 2001, 141: 209 [37] Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Environ Sci Technol, 2008, 42: 3791 [38] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164 [39] Zhang L W, Wang Y J, Xu T G, Zhu S B, Zhu Y F. J Mol Catal A, 2010, 331: 7 [40] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2010, 4: 7303 [41] Jin Z L, Zhang X J, Lu G X, Li S B. J Mol Catal A, 2006, 259: 275 [42] Jin Z L, Zhang X J, Li Y X, Li S B, Lu G X. Catal Commun, 2007, 8: 1267 [43] Fu X Zh, Ding Zh X, Su W Y, Li D Zh. Chin J Catal (付贤智, 丁正新, 苏文悦, 李旦振. 催化学报), 1999, 20: 321 [44] Su W Y, Chen Y L, Fu X Zh, Wei K M. Chin J Catal (苏文悦, 陈亦琳, 付贤智, 魏可镁. 催化学报), 2001, 22: 175 [45] Yu J C, Zhang L Z, Zheng Z, Zhao J C. Chem Mater, 2003,15: 2280 [46] Hou Y D, Wu L, Wang X C, Ding Z X, Li Z H, Fu X Z. J Catal, 2007, 250: 12 [47] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J Am Chem Soc, 2012, 134: 4473 [48] Huang J H, Ding K N, Hou Y D, Wang X C, Fu X Z. ChemSusChem, 2008, 1: 1011 [49] Liang S J, Wu L, Bi J H, Wang W J, Gao J, Li Z H, Fu X Z. Chem Commun, 2010, 46: 1446 [50] Ma L L, Sun H Z, Zhang Y G, Lin Y L, Li J L, Wang E K, Yu Y, Tan M, Wang J B. Nanotechnology, 2008, 19: 115709 [51] Xie Z, Zhu Y G, Xu J, Huang H T, Chen D, Shen G Z. CrystEngComm, 2011, 13: 6393 [52] Cao S W, Zhu Y J. J Phys Chem C, 2008, 112: 6253 [53] Wu L, Bi J H, Li Z H, Wang X X, Fu X Z. Catal Today, 2008, 131: 15 [54] Tang J W, Zou Z G, Ye J H. Angew Chem, Int Ed, 2004, 43: 4463 [55] Guo Y H, Li D F, Hu C W, Wang Y H, Wang E B. Chem J Chin U, 2001, 22: 1453 [56] Yan G Y, Wang X X, Fu X Z, Li D Z. Catal Today, 2004, 93-95: 851 [57] Li L, Li G D, Yan C, Mu X Y, Pan X L, Zou X X, Wang K X, Chen J S. Angew Chem, Int Ed, 2011, 50: 8299 [58] Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew Chem, Int Ed, 2012, 124: 3420 [59] Liu G, Niu P, Yin L C, Cheng H M. J Am Chem Soc, 2012, 134: 9070 [60] Xia X H, Jia Z J, Yu Y, Liang Y, Wang Z, Ma L L. Carbon, 2007, 45: 717 [61] Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J Am Chem Soc, 2011, 133: 10878 [62] An X Q, Yu J C, Wang Y, Hu Y M, Xu X L, Zhang G J. J Mater Chem, 2012, 22: 8525 [63] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76 [64] Zhang J S, Zhang G G, Chen X F, Lin S, Möhlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Angew Chem, Int Ed, 2012, 51: 3183 [65] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys Chem Chem Phys, 2012, 14: 1455 [66] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126: 4782 [67] Wu J C S, Chen C H. J Photochem Photobio A, 2004, 163: 509 [68] Hsien Y H, Chang C F, Chen Y H, Cheng S. Appl Catal B, 2001, 31: 241 [69] Wang K H, Hsieh Y H, Chou M Y, Chang C Y. Appl Catal B, 1999, 21: 1 [70] Wei T Y, Wan C C. Ind Eng Chem Res, 1991, 30: 1293 [71] Tsai S J, Cheng S. Catal Today, 1997, 33: 227 [72] Zhang C, Zhu Y F. Chem Mater, 2005, 17: 3537 [73] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ Sci Technol, 2007, 41: 6234 [74] Zhang H, Zong R L, Zhao J C, Zhu Y F. Environ Sci Technol, 2008, 42: 3803 [75] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180 [76] Xu T G, Zhang L W, Cheng H Y, Zhu Y F. Appl Catal B, 2011, 101: 382 [77] Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y, Whangbo M H. Angew Chem, Int Ed, 2008, 47: 7931 [78] Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Whangbo M H. Chem Eur J, 2009, 15: 1821 [79] Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331: 746 [80] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem, Int Ed, 2008, 47: 1766 [81] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176 [82] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165 [83] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575 [84] Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J Mater Chem, 2012, 22: 18542 [85] Wu C P, Zhou Y, Zou Zh G. Chin J Catal (吴聪萍, 周勇, 邹志刚. 催化学报), 2011, 32: 1565 [86] Tseng I H, Chang W C, Wu J C S. Appl Catal B, 2002, 37: 37 [87] Tseng I H, Chang W C, Chou H Y. J Catal, 2004, 221: 432 [88] Chen S Zh, Zhong Sh H, Xiao X F. Chin J Catal (陈崧哲, 钟顺和, 肖秀芬. 催化学报), 2003, 24: 67 [89] Mei Ch S, Zhong Sh H. Chin J Catal (梅长松, 钟顺和. 催化学报), 2004, 25: 937 [90] Liu Q, Zhou Y, Kou J H, Chen X Y, Tian Z P, Gao J, Yan S C, Zou Z G. J Am Chem Soc, 2010, 132: 14385 [91] Liu Q, Zhou Y, Tian Z P, Chen X Y, Gao J, Zou Z G. J Mater Chem, 2012, 22: 2033 [92] Yan S C, Wan L J, Li Z S, Zou Z G. Chem Commun, 2011, 47: 5632 [93] Yan S C, Ouyang S X, Gao J, Yang M, Feng J Y, Fan X X, Wan L J, Li Z S, Ye J H, Zhou Y, Zou Z G. Angew Chem, Int Ed, 2010, 49: 6400 [94] Yan S C, Yu H, Wang N Y, Li Z S, Zou Z G. Chem Commun, 2012, 48: 1048 [95] Zhang M, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2008, 47: 9730 [96] Wang Q, Zhang M, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2010, 49: 7976 [97] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2011, 5: 7426 [98] Zhang N, Zhang Y H, Pan X Y, Yang M Q, Xu Y J. J Phys Chem C, 2012, 116: 18023 [99] Lang X J, Ji H W, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2011, 50: 3934 [100] Lang X J, Ma W H, Zhao Y B, Chen C C, Ji H W, Zhao J C. Chem Eur J, 2012, 18: 2624 [101] Tao Y T, Yeh W L, Tu C L,Chow Y L. J Mol Catal, 1991, 67: 105 [102] Li X Y, Kutal C. J Mater Sci Lett, 2002, 21: 1525 [103] Huang H Y, Zhou J H, Liu H L, Zhou Y H, Feng Y Y. J Hazard Mater, 2010, 178: 994 [104] Lu H Q, Zho J H, Li L, Gong L M, Zheng J F, Zhang L X,Wang Z J, Zhang J, Zhu Z P. Energy Environ Sci, 2011, 4: 3384 [105] Chen C C, Ma W H, Zhao J C. Chem Soc Rev, 2010, 39: 4206 [106] Wu T X, Liu G M, Zhao J C, Hidaka H, Serpone N. J Phys Chem B, 1998, 102: 5845 [107] Wu T X, Lin T, Zhao J C, Hidaka H, Serpone N. Environ Sci Technol, 1999, 33: 1379 [108] Zhang M, Wang Q, Chen C C, Zang L, Ma W H, Zhao J C. Angew Chem Int Ed, 2009, 48: 6081 [109] Shi J Y, Chen J, Feng Z C, Chen T, Lian Y X, Wang X L, Li C. J Phys Chem C, 2007, 111: 693 [110] Chen T, Feng Z C, Wu G P, Shi J Y, Ma G J, Ying P L, Li C. J Phys Chem C, 2007, 111: 8005 [111] Zhang J, Zhang Y P, Lei Y K, Pan C X. Catal Sci Technol, 2011, 1: 273 [112] Wang Y H, Huang F, Pan D M, Li B, Chen D G, Lin W W, Chen X Y, Li R F, Lin Z. Chem Commun, 2009, 44: 6783 [113] Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J Am Chem Soc, 2012, 134: 13366 [114] Li Y F, Liu Z P, Liu L L, Gao W G. J Am Chem Soc, 2010, 132: 13008 [115] Li Y F, Liu Z P. J Am Chem Soc, 2011, 133: 15743 |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[5] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[10] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[11] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[12] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[13] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[14] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[15] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||