Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (6): 1216-1223.DOI: 10.1016/S1872-2067(12)60574-9
• Articles • Previous Articles Next Articles
YU Fuhaia,b, WANG Junhua, ZHAO Kunfenga,b, YIN Jiea,b, JIN Changzia, LIU Xina
Received:
2013-01-08
Revised:
2013-03-15
Online:
2013-06-07
Published:
2013-06-09
Supported by:
This work was supported by the Chinese Academy of Sciences for “100 Talents” Project, the National Natural Science Foundation of China (11079036), and the Natural Science Foundation of Liaoning Province (20092173).
YU Fuhai, WANG Junhu, ZHAO Kunfeng, YIN Jie, JIN Changzi, LIU Xin. A novel approach for the preparation of phase-tunable TiO2 nanocomposite crystals with superior visible-light-driven photocatalytic activity[J]. Chinese Journal of Catalysis, 2013, 34(6): 1216-1223.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60574-9
[1] Fujishima A, Honda K. Nature, 1972, 238: 37 [2] Pal M, Serrano J G, Santiago P, Pal U. J Phys Chem C, 2007, 111: 96 [3] Peng C W, Ke T Y, Brohan L, Richard-Plouet M, Huang J C, Puzenat E, Chiu H T, Lee C Y. Chem Mater, 2008, 20: 2426 [4] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. ACS Appl Mater Inte, 2009, 1: 1140 [5] Chen Y M, Zhong J, Chen F, Zhang J L. Chin J Catal (陈艳敏, 钟晶, 陈锋, 张金龙. 催化学报), 2010, 31: 120 [6] Wang L Y, Wang H X, Wang A J, Liu M. Chin J Catal (王丽燕, 王红霞, 王爱杰, 刘敏. 催化学报), 2009, 30: 939 [7] Mukherji A, Marschall R, Tanksale A, Sun Ch H, Smith S C, Lu G Q, Wang L Zh. Adv Funct Mater, 2011, 21: 126 [8] Mukherji A, Seger B, Lu G Q, Wang L Zh. ACS Nano, 2011, 5: 3483 [9] Wang J, Nonami T. J Mater Sci, 2004, 39: 6367 [10] Bedford N M, Steckl A J. Appl Mater Interf, 2010, 2: 2448 [11] He D L, Meng X J, Tao Y C, Zhang L, Xiao F S. Chin J Catal (和东亮, 孟祥举, 陶艳春, 张琳, 肖丰收. 催化学报), 2009, 30: 83 [12] He J, Cai Q Z, Xiao F, Luo Q, Wang L J, Zhu D. Chin J Catal (何剑, 蔡启舟, 肖枫, 罗强, 王丽娟, 祝迪. 催化学报), 2009, 30: 1137 [13] Sopyan I, Watanabe M, Murasawa S, Hashimoto K, Fujishima A. J Photochem Photobiol A, 1996, 98: 79 [14] Zhu Y F, Shen W Z. Appl Surf Sci, 2010, 256: 7472 [15] Zhang J, Yan S, Fu L, Wang F, Yuan M Q, Luo G X, Xu Q, Wang X, Li C. Chin J Catal (张静, 阎松, 付鹿, 王飞, 原梦琼, 罗根祥, 徐倩, 王翔, 李灿. 催化学报), 2011, 32: 983 [16] Yu H G, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K. J Phys Chem C, 2010, 114: 16481 [17] Wang X H, Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T. J Am Chem Soc, 2005, 127: 10982 [18] Kaleji B K, Sarraf-Mamoory R, Nakata K, Fujishima A. J Sol-Gel Sci Technol, 2011, 60: 99 [19] Suriye K, Praserthdam P, Jongsomjit B. Appl Surf Sci, 2007, 253: 3849 [20] Tryba B, Morawski A W, Inagaki M. Appl Catal B, 2003, 41: 427 [21] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269 [22] Wang J, Tafen D N, Lewis J P, Hong Zh L, Manivannan A, Zhi M J, Li M, Wu N Q. J Am Chem Soc, 2009, 131: 12290 [23] Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Appl Catal A, 2004, 265: 115 [24] Liu E Q, Guo X L, Qin L, Shen G D, Wang X D. Chin J Catal (刘二强, 郭晓玲, 秦雷, 申国栋, 王向东. 催化学报), 2012, 33: 1665 [25] Choi W, Termin A, Hoffman M R. J Phys Chem, 1994, 98: 13669 [26] Choi S K, Kim S, Lim S K, Park H. J Phys Chem C, 2010, 114: 16475 [27] Zhang J, Xu Q, Feng Z C, Li M, Li C. Angew Chem Int Ed, 2008, 47: 1766 [28] Xiang Q J, Yu J G. Chin J Catal (向全军, 余家国. 催化学报), 2011, 32: 525 [29] Wu Q, Wu Z J, Li Y L, Gao H T, Pu L Y, Zhang T H, Du L X. Chin J Catal (吴谦, 吴志娇, 李永良, 高洪涛, 朴玲钰, 张天慧, 杜利霞. 催化学报), 2012, 33: 1743 [30] Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331: 746 [31] Tao J G, Luttrell T, Batzill M. Nature Chem, 2011, 3: 296 [32] Etacheri V, Seery M K, Hinder S J, Pillai S C. Adv Funct Mater, 2011, 21: 3744 [33] Nonami T, Hase H, Funakoshi K. Catal Today, 2004, 96: 113 [34] Li Y J, Li X D, Li J W, Yin J. Water Res, 2006, 40: 1119 [35] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487 [36] Li Y J, Chen W, Li L Y, Ma M Y. Sci China Chem, 2011, 54: 497 [37] Wang J, Ozawa K, Takahashi M, Takeda M, Nonami T. Chem Mater, 2006, 18: 2261 [38] Ozawa K, Wang J, Ye J H, Sakka Y, Amano M. Chem Mater, 2003, 15: 928 [39] Ichinose H, Terasaki M, Katsuki H. J Sol-Gel Sci Technol, 2001, 22: 33 [40] Spurr R A, Myers H. Anal Chem, 1957, 29: 760 [41] Yoon S D, Chen Y, Yang A, Goodrich T L, Zuo X, Arena D A, Ziemer K, Vittoria C, Harris V G. J Phys: Condens Matter, 2006, 16: 355 [42] Tseng Y H, Kuo C S, Huang C H, Li Y Y, Chou P W, Cheng C L, Wong M S. Nanotechnology, 2006, 17: 2490 [43] Hurum D C, Agrios A G, Gray K A, Rajh T, Thurnauer M C. J Phys Chem B, 2003, 107: 4545 [44] Dambournet D, Belharouak I, Amine K. Chem Mater, 2010, 22: 1173 [45] Testino A, Bellobono I R, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F. J Am Chem Soc, 2007, 129: 3564 [46] Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. Angew Chem, Int Ed, 2002, 41:2811 [47] Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G. Nat Mater, 2006, 5: 189 [48] Herman G S, Gao Y. Thin Solid Films, 2001, 397: 157 [49] Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G, Levy F. J Appl Phys, 1994, 75: 2945 [50] Yamanaka S, Makita K. J Porous Mater, 1995, 1: 29 [51] Rumaiz A K, Ali B, Ceylan A, Boggs M, Beebe T, Shah S I. Solid State Commun, 2007, 144: 334 [52] Ihara T, Miyoshi M. Ando M, Sugihara S, Iriyama Y. J Mater Sci, 2001, 36: 4201 [53] Osorio-Vargas P A, Pulgarin C, Sienkiewicz A, Pizzio L R, Blanco M N, Torres-Palma R A, Pétrier C, Rengifo-Herrera J A. Ultrason Sonochem, 2012, 19: 383 [54] Chen C H, Shieh J, Hsieh S M, Kuo C L, Liao H Y. Acta Mater, 2012, 60: 6429 [55] Yu J G, Xiong J F, Cheng B, Liu Sh W. Appl Catal B, 2005, 60: 211 [56] Yu J G, Wang B. Appl Catal B, 2010, 94: 295 |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[7] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Xing-Wei Gu, Youcan Zhang, Fengqian Zhao, Han-Jun Ai, Xiao-Feng Wu. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex [J]. Chinese Journal of Catalysis, 2023, 48(5): 214-223. |
[14] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[15] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||