Chinese Journal of Catalysis ›› 2014, Vol. 35 ›› Issue (10): 1609-1618.DOI: 10.1016/S1872-2067(14)60170-4
• Review • Previous Articles Next Articles
Changlin Yua, Wanqin Zhoua, Jimmy C. Yub, Hong Liuc, Longfu Weia
Received:
2014-05-24
Revised:
2014-06-05
Online:
2014-09-28
Published:
2014-09-30
Supported by:
This work was supported by the National Natural Science Foundation of China (21067004, 21263005), Young Science and Technology Project of Jiangxi Province Natural Science Foundation (20133BAB21003), Young Scientist Training Project of Jiangxi Province (20122BCB23015), the Implement Project of Science and Technology of Colleges and Universities in Jiangxi Province (KJLD14046), and One Hundred Talents Program of Chinese Academy of Sciences.
Changlin Yu, Wanqin Zhou, Jimmy C. Yu, Hong Liu, Longfu Wei. Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation[J]. Chinese Journal of Catalysis, 2014, 35(10): 1609-1618.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(14)60170-4
[1] Fujishima A, Honda K. Nature, 1972, 238: 37 [2] Cui W Q, Liu Y F, Liu L, Hu J S, Liang Y H. Appl Catal A, 2012, 417-418: 111 [3] Jing D W, Jing L, Liu H, Yao S, Guo L J. Ind Eng Chem Res, 2013, 52: 1992 [4] Ahmed A Y, Kandiel T A, Oekermann T, Bahnemann D. J Phys Chem Lett, 2011, 2: 2461 [5] Zhang J Y, Wang Y H, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl Mater Interfaces, 2013, 5: 1031 [6] Cui W Q, Ma S S, Liu L, Liang Y H. Chem Eng J, 2012, 204-206: 1 [7] Wang Y, Yu J G, Xiao W, Li Q. J Mater Chem A, 2014, 2: 3847 [8] Yu C L, Yang K, Xie Y, Fan Q Z, Yu J C, Shu Q, Wang C Y. Nanoscale, 2013, 5: 2142 [9] Yu C L, Cao F F, Li X, Li G, Xie Y, Yu J C, Shu Q, Fan Q Z, Chen J C. Chem Eng J, 2013, 219: 86 [10] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250 [11] Yu C L, Chen J C, Cao F F, Li X, Fan Q Z, Yu J C, Wei L F. Chin J Catal (余长林, 陈建钗, 操芳芳, 李鑫, 樊启哲, Yu J C, 魏龙福. 催化学报), 2013, 34: 385 [12] Li K, Chai B, Peng T Y, Mao J, Zan L. ACS Catal, 2013, 3: 170 [13] Gr?tzel M. J Photochem Photobiol C, 2003, 4: 145 [14] Gong X Q, Selloni A, Dulub O, Jacobson P, Diebold U. J Am Chem Soc, 2008, 130: 370 [15] Rodrigues S, Ranjit K T, Uma S, Martyanov I N, Klabunde K J. Adv Mater, 2005, 17: 2467 [16] Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 4516 [17] Chen X F, Wang X C, Hou Y D, Huang J H, Wu L, Fu X Z. J Catal, 2008, 255: 59 [18] Yu C L, Li G, Kumar S, Kawasaki H, Jin R C. J Phys Chem Lett, 2013, 4: 2847 [19] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269 [20] Yu C L, Cao F F, Li G, Wei R F, Yu J C, Jin R C, Fan Q Z, Wang C Y. Sep Purif Technol, 2013, 120: 110 [21] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76 [22] Zhou X M, Liu G, Yu J G, Fan W H. J Mater Chem, 2012, 22: 21337 [23] Bi Y P, Hu H Y, Ouyang S X, Lu G X, Cao J Y, Ye J H. Chem Commun, 2012, 48: 3748 [24] Heremans P, Cheyns D, Rand B P. Acc Chem Res, 2009, 42: 1740 [25] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766 [26] Yu C L, Li G, Kumar S, Yang K, Jin R C. Adv Mater, 2014, 26: 892 [27] Su R, Tiruvalam R, Logsdail A J, He Q, Downing C A, Jensen M T, Dimitratos N, Kesavan L, Wells P P, Bechstein R, Jensen H H, Wendt S, Catlow C R A, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2014, 8: 3490 [28] Yu C L, Wei L F, Li X, Chen J C, Fan Q Z, Yu J C. Mater Sci Eng B, 2013, 178: 344 [29] Yu C L, Yang K, Zhou W Q, Fan Q Z, Wei L F, Yu J C. J Phys Chem Solids, 2013, 74: 1714 [30] Yu C L, Fan C F, Meng X J, Yang K, Cao F F, Li X. React Kinet Catal Lett, 2011, 103: 141 [31] Yu C L, Yu J C, Fan C F, Wen H R, Hu S J. Mater Sci Eng B, 2010, 166: 213 [32] Xing M Y, Yang B Y, Yu H, Tian B Z, Bagwasi S, Zhang J L, Gong X Q. J Phys Chem Lett, 2013, 4: 3910 [33] Yu J G, Xiong J F, Cheng B, Liu S W. Appl Catal B, 2005, 60: 211 [34] Yu C L, Fan Q Z, Xie Y, Chen J C, Shu Q, Yu J C. J Hazard Mater, 2012, 237-238: 38 [35] Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E. J Phys Chem C, 2012, 116: 20887 [36] Yu C L, Cai D J, Yang K, Yu J C, Zhou Y, Fan C F. J Phys Chem Solids, 2010, 71: 1337 [37] Yu C L, Yu J C. Catal Lett, 2009, 129: 462 [38] Yu J G, Wang Y, Xiao W. J Mater Chem A, 2013, 1: 10727 [39] Kumar N, Maitra U, Hegde V I, Waghmare U V, Sundaresan A, Rao C N R. Inorg Chem, 2013, 52: 10512 [40] Boppana V B R, Lobo R F. J Catal, 2011, 281: 156 [41] Yu C L, Yu J C, Zhou W Q, Yang K. Catal Lett, 2010, 140: 172 [42] Xing M Y, Qi D Y, Zhang J L, Chen F, Tian B Z, Bagwas S, Anpo M. J Catal, 2012, 294: 37 [43] Xing M Y, Zhang J L, Chen F, Tian B Z. Chem Commun, 2011, 47: 4947 [44] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575 [45] Qiu B C, Xing M Y, Zhang J L. J Am Chem Soc, 2014, 136: 5852 [46] Dai G P, Yu J G, Liu G. J Phys Chem C, 2011, 115: 7339 [47] Yu C L, Wei L F, Chen J C, Xie Y, Zhou W Q, Fan Q Z. Ind Eng Chem Res, 2014, 53: 5759 [48] Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T T Y. J Phys Chem C, 2011, 115: 7419 [49] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164 [50] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl Mater Interfaces, 2009, 1: 2111 [51] Kim Y J, Gao B F, Han S Y, Jung M H, Chakraborty A K, Ko T, Lee C, Lee W I. J Phys Chem C, 2009, 113: 19179 [52] Sun M, Chen G D, Zhang Y K, Wei Q, Ma Z M, Du B. Ind Eng Chem Res, 2012, 51: 2897 [53] Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Wither R L. Nat Mater, 2010, 9: 559 [54] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J Am Chem Soc, 2011, 133: 6490 [55] Bi Y P, Ouyang S X, Cao J Y, Ye J H. Phys Chem Chem Phys, 2011, 13: 10071 [56] Yang X F, Cui H Y, Li Y, Qin J L, Zhang R X, Tang H. ACS Catal, 2013, 3: 363 [57] Tang J T, Liu Y H, Li H Z, Tan Z, Li D T. Chem Commun, 2013, 49: 5498 [58] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900 [59] Wang W S, Du H, Wang R X, Wen T, Xu A W. Nanoscale, 2013, 5: 3315 [60] Zhu L, Wei B, Xu L L, Lü Z, Zhang H L, Gao H, Che J X. CrystEngComm, 2012, 14: 5705 [61] Xu H, Xu Y G, Li H M, Xia J X, Xiong J, Yin S, Huang C J, Wan H L. Dalton Trans, 2012, 41: 3387 [62] Zhou W J, Liu H, Wang J Y, Liu D, Du G J, Cui J J. ACS Appl Mater Interfaces, 2010, 2: 2385 [63] Yao W F, Zhang B, Huang C P, Ma C, Song X L, Xu Q J. J Mater Chem, 2012, 22: 4050 [64] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal (沈凯, Gondal M A, Siddigue R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78 [65] He W W, Kim H K, Wamer W G, Melka D, Callahan J H, Yin J J. J Am Chem Soc, 2014, 136: 750 [66] Mclaren A, Valdes-Solis T, Li G Q, Tsang S C. J Am Chem Soc, 2009, 131: 12540 [67] Li P, Wei Z, Wu T, Peng Q, Li Y D. J Am Chem Soc, 2011, 133: 5660 [68] Chu D, Masuda Y, Ohji T, Kato K. Langmuir, 2010, 26: 2811 [69] Yu C L, Yang K, Yu J C, Peng P, Cao F F, Li X, Zhou X C. Acta Phys-Chim Sin (物理化学学报), 2011, 27: 505 [70] Lai Y L, Meng M, Yu Y F, Wang X T, Ding T. Appl Catal B, 2011, 105: 335 [71] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X. Chin J Catal (余长林, 杨凯, 舒庆, Yu J C, 操芳芳, 李鑫. 催化学报), 2011, 32: 555 [72] Yu L L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Inorg Mater (余长林, 杨凯, Yu J C, 操芳芳, 李鑫, 周晓春. 无机材料学报), 2011, 26: 1157 [73] Yang K, Yu C L, Zhang L N, Yu J C. J Synth Cryst (杨凯, 余长林, 张丽娜, 余济美. 人工晶体学报), 2012, 41: 171 [74] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C. Sci China Chem, 2012, 55: 1802 [75] Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Inorg Chem, 2009, 48: 1819 [76] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176 [77] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900 [78] Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K. Mater Res Bull, 2011, 46: 140 [79] Yu C L, Zhou W Q, Yu J C, Cao F F, Li X. Chin J Chem, 2012, 30: 721 [80] Yu C L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Alloys Compd, 2011, 509: 4547 [81] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J Phys Chem C, 2007, 111: 18288 [82] Xie T P, Liu C L, Xu L J, Yang J, Zhou W. J Phys Chem C, 2013, 117: 24601 [83] Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. J Phys Chem C, 2012, 116: 11004 [84] He Z Q, Shi Y Q, Gao C, Wen L N, Chen J M, Song S A. J Phys Chem C, 2014, 118: 389 [85] Chang C, Zhu L Y, Wang S F, Chu X L, Yue L F. ACS Appl Mater Interfaces, 2014, 6: 5083 [86] Reddy K H, Martha S, Parida K M. Inorg Chem, 2013, 52: 6390 [87] Xu L L, Ni L, Shi W D, Guan J G. Chin J Catal (许蕾蕾,倪磊,施伟东,官建国.催化学报), 2012, 33: 1101 [88] Yu J G, Jin J, Cheng B, Jaroniec M. J Mater Chem A, 2014, 2: 3407 [89] Chai S N, Zhao G H, Zhang Y N, Wang Y J, Nong F Q, Li M F, Li D M. Environ Sci Technol, 2012, 46: 10182 [90] Yang L X, Luo S L, Li Y, Xiao Y, Kang Q, Cai Q Y. Environ Sci Technol, 2010, 44: 7641 [91] Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett, 2011, 11: 4774 |
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[4] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[5] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[6] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[7] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[8] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[9] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[10] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[11] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[12] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[13] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[14] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[15] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||