Chinese Journal of Catalysis ›› 2015, Vol. 36 ›› Issue (3): 372-379.DOI: 10.1016/S1872-2067(14)60237-0
• Articles • Previous Articles Next Articles
Yanjuan Cui
Received:
2014-08-31
Revised:
2014-10-08
Online:
2015-02-14
Published:
2015-02-14
Supported by:
This work was supported by the Natural Science Foundation of Jiangsu Province (BK20140507).
Yanjuan Cui . In-situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties[J]. Chinese Journal of Catalysis, 2015, 36(3): 372-379.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(14)60237-0
[1] Wang X C, Maeda K, Chen X F, TakaNabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. J Am Chem Soc, 2009, 131: 1680 [2] Fischer A, Antonietti M, Thomas A. Adv Mater, 2007, 19: 264 [3] Kim M, Hwang S, Yu J S. J Mater Chem, 2007, 17: 1656 [4] Park S S, Chu S W, Xue C F, Zhao D Y, Ha C S. J Mater Chem, 2011, 21: 10801 [5] Lee E Z, Jun Y S, Hong W H, Thomas A, Jin M M. Angew Chem Int Ed, 2010, 49: 9706 [6] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew Chem Int Ed, 2006, 45: 4467 [7] Wang Y, Wang X C, Antonietti M. Angew Chem Int Ed,2012, 51: 68 [8] Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z. Energy Environ Sci, 2012, 5: 6717 [9] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Sci, 2012, 3: 443 [10] Cao S W, Yu J G. J Phys Chem Lett, 2014, 5: 2101 [11] Yan S C, Li Z S, Zou Z G. Langmuir, 2010, 26: 3894 [12] Lee S C, Lintang H O, Yuliati L. Chem Asian J, 2012, 7: 2139 [13] Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M. J Am Chem Soc, 2013, 135: 7118 [14] Li X H, Antonietti M. Chem Soc Rev, 2013, 42: 6593 [15] Ye X J, Cui Y J, Wang X C. ChemSusChem, 2014, 7: 738 [16] Zhang Y J, Mori T, Ye J H, Antoniett M. J Am Chem Soc, 2010, 132: 6294 [17] Wang W J, Yu J C, Xia D H, Wong P K, Li Y C. Environ Sci Technol, 2013, 47: 8724 [18] Pan C S, Xu J, Wang Y J, Li D, Zhu Y F. Adv Funct Mater, 2012, 22: 1518 [19] Yu J G, Wang S H, Low J X, Xiao W. Phys Chem Chem Phys, 2013, 15: 16883 [20] Sun J X, Yuan Y P, Qiu L G, Jiang X, Xie A J, Shen Y H, Zhu J F. Dalton Trans, 2012, 41: 6756 [21] Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. J Mater Chem, 2012, 22: 21159 [22] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal(沈凯, Gondal M A, Siddique R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78 [23] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636 [24] Hirai T, Bando Y, Komasawa I. J Phys Chem B, 2002, 106: 8967 [25] Tang Z R, Yin X, Zhang Y H, Xu Y J. Inorg Chem, 2013, 52: 11758 [26] Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. J Phys Chem C, 2010, 114: 1963 [27] Ge L, Zuo F, Liu J K, Ma Q, Wang C, Sun D Z, Bartels L, Feng P Y. J Phys Chem C, 2012, 116: 13708 [28] Fu J, Chang B B, Tian Y L, Xi F N, Dong X P. J Mater Chem A, 2013, 1: 3083 [29] Cui Y J, Zhang J S, Zhang G G, Huang J H, Liu P, Antonietti M, Wang X C. J Mater Chem, 2011, 21: 13032 [30] Cui Y J, Huang J H, Fu X Z, Wang X C. Catal Sci Technol, 2012, 2: 1396 [31] Lotsch B V, Schnick W. Chem Mater, 2006, 18: 1891 [32] Lyth S M, Nabae Y, Moriya S, Kuroki S, Kakimoto M, Ozaki J, Miyata S. J Phys Chem C, 2009, 113: 20148 [33] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J Mater Chem, 2011, 21: 14398 [34] Foy D, Demazeau G, Florian P, Massiot D, Labrugere C, Goglio G. J Solid State Chem, 2009, 182: 165 [35] Cao S W, Yuan Y P, Fang J, Shahjamali M M, Boey F Y C, Barber J, Loo S C J, Xun C. Int J Hydrogen Energy, 2013, 38, 1258 [36] Bao N Z, Shen L M, Takata T, Domen K. Chem Mater, 2008, 20: 110 [37] Jiang D W, Zhou T S, Sun Q, Yu Y Y, Shi G Y, Jin L T. Chin J Chem, 2011, 29: 2505 [38] Chen X F, Jun Y S, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Mater, 2009, 21, 4093 [39] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew Chem Int Ed, 2010, 49: 441 [40] Zhang J S, Zhang M W, Sun R Q, Wang X C. Angew Chem Int Ed, 2012, 51: 10145 [41] Zhang G G, Zhang M W, Ye X X, Qiu X Q, Lin S, Wang X C. Adv Mater, 2014, 26: 805 [42] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys Chem Chem Phys, 2012, 14: 1455 |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[7] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[14] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[15] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||