Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (8): 1230-1239.DOI: 10.1016/S1872-2067(20)63531-8
• Articles • Previous Articles Next Articles
Kai Lia, Mengxia Jia, Rong Chenb, Qi Jiangb, Jiexiang Xiaa, Huaming Lia
Received:
2019-11-02
Revised:
2019-12-18
Online:
2020-08-18
Published:
2020-08-08
Supported by:
Kai Li, Mengxia Ji, Rong Chen, Qi Jiang, Jiexiang Xia, Huaming Li. Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance[J]. Chinese Journal of Catalysis, 2020, 41(8): 1230-1239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63531-8
[1] J. H. Zhao, Z. W. Zhao, N. Li, J. Nan, R. X. Yu, J. Y. Du, Chem. Eng. J., 2018, 353, 805-813. [2] C. Y. Wang, X. Zhang, H. B. Qiu, G. X. Huang, H. Q. Yu, Appl. Catal. B, 2017, 205, 615-623. [3] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38. [4] Y. Bai, L. Q. Ye, T. Chen, P. Q. Wang, L. Wang, X. Shi, P. K. Wong, Appl. Catal. B, 2017, 203, 633-640. [5] J. Jiang, K. Zhao, X. Y. Xiao, L. Z. Zhang, J. Am. Chem. Soc., 2012, 134, 4473-4476. [6] S. Y. Wang, X. Hai, X. Ding, K. Chang, Y. G. Xiang, X. G. Meng, Z. X. Yang, H. Chen, J. H. Ye, Adv. Mater., 2017, 29, 1701774/1-1701774/7. [7] Y. J. Sun, J. Z. Liao, F. Dong, S. J. Wu, L. D. Sun, Chin. J. Catal., 2019, 40, 362-370. [8] Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu, R. L. Withers, Nat. Mater., 2010, 9, 559-564. [9] J. R. Li, W. D. Zhang, M. X. Ran, Y. J. Sun, H. W. Huang, F. Dong, Appl. Catal. B, 2019, 243, 313-321. [10] Y. Kim, H. B. Kim, D. J. Jang, J. Mater. Chem. A, 2014, 2, 5791-5799. [11] X. W. Li, W. D. Zhang, W. Cui, J. Y. Li, Y. J. Sun, G. M. Jiang, H. W. Huang, Y. X. Zhang, F. Dong, Chem. Eng. J., 2019, 370, 1366-1375. [12] H. Wang, X. D. Zhang, J. F. Xie, J. J. Zhang, P. Ma, B. C. Pan, Y. Xie, Nanoscale, 2015, 7, 5152-5156. [13] H. Yi, M. Yan, D. L. Huang, G. M. Zeng, C. Lai, M. F. Li, X. Q. Huo, L. Qin, S. Y. Liu, X. G. Liu, B. S. Li, H. Wang, M. C. Shen, Y. K. Fu, X. Y. Guo, Appl. Catal. B, 2019, 250, 52-62. [14] B. R. Xu, J. Li, L. Liu, Y. D. Li, S. H. Guo, Y. Q. Gao, N. Li, L. Ge, Chin. J. Catal., 2019, 40, 713-721. [15] M. L. Guan, C. Xiao, J. Zhang, S. J. Fan, R. An, Q. M. Cheng, J. F. Xie, M. Zhou, B. J. Ye, Y. Xie, J. Am. Chem. Soc., 2013, 135, 10411-10417. [16] J. Li, Y. Yu, L. Z. Zhang, Nanoscale, 2014, 6, 8473-8488. [17] M. L. Pan, H. J. Zhang, G. D. Gao, L. Liu, W. Chen, Environ. Sci. Technol., 2015, 49, 6240-6248. [18] L. Q. Ye, Y. R. Su, X. L. Jin, H. Q. Xie, C. Zhang, Environ. Sci.-Nano, 2014, 1, 90-112. [19] H. F. Cheng, B. B. Huang, Y. Dai, Nanoscale, 2014, 6, 2009-2026. [20] Y. Mi, M. Zhou, L. Y. Wen, H. P. Zhao, Y. Lei, Dalton Trans., 2014, 43, 9549-9556. [21] L. Q. Ye, L. H. Tian, T. Y. Peng, L. Zan, J. Mater. Chem., 2011, 21, 12479-12484. [22] L. Zeng, F. Zhe, Y. Wang, Q. L. Zhang, X. Y. Zhao, X. Hu, Y. Wu, Y. M. He, J. Colloid Interface Sci., 2019, 539, 563-574. [23] M. X. Ji, R. Chen, J. Di, Y. L. Liu, K. Li, Z. G. Chen, J. X. Xia, H. M. Li, J. Colloid Interf. Sci., 2019, 533, 612-620. [24] J. X. Wang, Z. Z. Zhang, X. Wang, Y. Shen, Y. F. Guo, P. K. Wong, R. B. Bai, Chin. J. Catal., 2018, 39, 1792-1803. [25] J. X. Lv, X. M. Liu, P. C. Li, W. Jin, J. Xu, Y. P. Zhao, Sci. Total Environ., 2019, 669, 194-204. [26] H. Li, F. Qin, Z. P. Yang, X. M. Cui, J. F. Wang, L. Z. Zhang, J. Am. Chem. Soc., 2017, 139, 3513-3521. [27] C. Chang, L. Y. Zhu, S. F. Wang, X. L. Chu, L. F. Yue, ACS Appl. Mater. Interfaces, 2014, 6, 5083-5093. [28] R. A. He, S. W. Cao, J. G. Yu, Y. C. Yang, Catal. Today, 2016, 264, 221-228. [29] X. Xiao, R. Hao, X. X. Zuo, J. M. Nan, L. S. Li, W. D. Zhang, Chem. Eng. J., 2012, 209, 293-300. [30] S. M. Sun, W. Z. Wang, L. Zhang, L. Zhou, W. Z. Yin, M. Shang, Environ. Sci. Technol., 2009, 43, 2005-2010. [31] C. Liang, C. G. Niu, L. Zhang, X. J. Wen, S. F. Yang, H. Guo, G. M. Zeng, J. Hazard. Mater., 2019, 361, 245-258. [32] Y. B. Liu, G. Q. Zhu, J. Z. Gao, R. L. Zhu, M. Hojamberdiev, C. H. Wang, X. M. Wei, P. Liu, Appl. Catal. B, 2017, 205, 421-432. [33] Y. Bai, L. Q. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 27661-27668. [34] F. Chen, Q. Yang, F. B. Yao, S. N. Wang, J. Sun, H. X. An, K. X. Yi, Y. L. Wang, Y. Y. Zhou, L. L. Wang, X. M. Li, D. B. Wang, G. M. Zeng, J. Catal., 2017, 352, 160-170. [35] Z. H. Zhao, M. Wang, T. Z. Yang, M. H. Fang, L. N. Zhang, H. K. Zhu, C. Tang, Z. H. Huang, J. Mol. Catal. A, 2016, 424, 8-16. [36] Y. N. Chen, G. Q. Zhu, M. Hojamberdiev, J. Z. Gao, R. L. Zhu, C. H. Wang, X. M. Wei, P. Liu, J. Hazard. Mater., 2018, 344, 42-54. [37] J. Lin, X. Y. Chen, P. Huang, Adv. Drug Deliever. Rev., 2016, 105, 242-254. [38] C. Chaicham, T. Tuntulani, V. Promarak, B. Tomapatanaget, Sens. Actuators B, 2019, 282, 936-944. [39] D. P. Huang, H. F. Zhou, Y. Q. Wu, T. Wang, L. L. Sun, P. Gao, Y. Z. Sun, H. N. Huang, G. J. Zhou, J. F. Hu, Carbon, 2019, 142, 673-684. [40] S. J. Zhuo, M. W. Shao, S. T. Lee, ACS Nano, 2012, 6, 1059-1064. [41] D. Qu, M. Zheng, J. Li, Z. G. Xie, Z. C. Sun, Light-Sci. Appl., 2015, 4, e364. [42] Y. Ma, A. Y. Chen, X. F. Xie, X. Y. Wang, D. Wang, P. Wang, H. J. Li, J. H. Yang, Y. Li, Talanta, 2019, 196, 563-571. [43] X. F. Wang, G. G. Wang, J. B. Li, Z. Liu, Y. X. Chen, L. F. Liu, J. C. Han, Chem. Eng. J., 2019, 361, 773-782. [44] H. Wang, Q. X. Mu, K. Wang, R. A. Revia, C. Yen, X. Y. Gu, B. W. Tian, J. Liu, M. Q. Zhang, Appl. Mater. Today, 2019, 14, 108-117. [45] Y. Q. Dong, H. C. Pang, H. B. Yang, C. X. Guo, J. W. Shao, Y. W. Chi, C. M. Li, T. Yu, Angew. Chem. Int. Ed., 2013, 52, 7800-7804. [46] J. J. Qian, C. Shen, J. Yan, F. N. Xi, X. P. Dong, J. Y. Liu, J. Phys. Chem. C, 2018, 122, 349-358. [47] L. H. Zheng, H. R. Su, J. Z. Zhang, L. S. Walekar, H. V. Molamahmood, B. X. Zhou, M. C. Long, Y. H. Hu, Appl. Catal. B, 2018, 239, 475-484. [48] P. H. Ding, J. Di, X. L. Chen, M. X. Ji, K. Z. Gu, S. Yin, G. P. Liu, F. Zhang, J. X. Xia, H. M. Li, ACS Sustain. Chem. Eng., 2018, 6, 10229-10240. [49] J. P. Zou, L. C. Wang, J. M. Luo, Y. C. Nie, Q. J. Xing, X. B. Luo, H. M. Du, S. L. Luo, S. L. Suib. Appl. Catal. B, 2016, 193, 103-109. [50] R. J. Liu, J. J. Zhao, Z. R. Huang, L. L. Zhang, M. B. Zou, B. F. Shi, S. L. Zhao, Sens. Actuators B, 2017, 240, 604-612. [51] M. Zhou, Z. G. Guo, Q. G. Song, X. F. Li, Z. F. Liu, Chem. Eng. J., 2019, 370, 218-227. [52] H. Q. Cheng, J. Wu, F. G. Tian, Q. Z. Liu, X. M. Qi, Q. W. Li, W. G. Pan, Z. Z. Li, J. Wei, Chem. Eng. J., 2019, 360, 951-963. [53] S. J. Zhu, Q. N. Meng, L. Wang, J. H. Zhang, Y. B. Song, H. Jin, K. Zhang, S. C. Sun, H. Y. Wang, B. Yang, Angew. Chem. Int. Ed., 2013, 52, 3953-3957. [54] J. N. Hart, P. W. May, N. L. Allan, K. R. Hallam, F. Glaeyssens, G. M. Fuge, M. Ruda, P. J. Heard, J. Solid State Chem., 2013, 198, 466-474. [55] X. X. Wang, W. Chen, T. J. Lin, J. Li, F. Yu, Y. L. An, Y. Y. Dai, H. Wang, L. S. Zhong, Y. H. Sun, Chin. J. Catal., 2018, 39, 1869-1880. [56] R. Chen, Z. G. Chen, M. X. Ji, H. X. Chen, Y. L. Liu, J. X. Xia, H. M. Li, J. Colloid Interface Sci., 2018, 532, 727-737. [57] Y. H. Xiang, P. J, Y. Wang, Y. Sun, D. Zhang, J. Q. Yu, Chem. Eng. J., 2016, 288, 264-275. [58] K. Rahimi, A. Yazdani, M. Ahmadirad, Mater. Res. Bull., 2018, 98, 148-154. [59] A. L. Yuan, H. Lei, F. N. Xi, J. Y. Liu, L. S. Qin, Z. Chen, X. P. Dong, J. Colloid Interface Sci., 2019, 548, 56-65. [60] X. F. Chang, J. Huang, C. Cheng, W. Sha, X. Li, G. B. Ji, S. B. Deng, G, Yu, J. Hazard. Mater., 2010, 173, 765-772. [61] M. X. Ji, J. X. Xia, J. Di, Y. L. Liu, R. Chen, Z. G. Chen, S. Yin, H. M. Li, Chem. Eng. J., 2018, 331, 355-363. [62] S. S. Ding, D. J. Mao, S. G. Yang, F. Wang, L. J. Meng, M. S. Han, H. He, C. Sun, B. Xu, Appl. Catal. B, 2017, 210, 386-399. [63] M. X. Ji, Y. L. Liu, J. Di, R. Chen, Z. G. Chen, J. X. Xia, H. M. Li, Appl. Catal. B, 2018, 237, 1033-1043. [64] C. L. Yu, W. Q. Zhou, L. H. Zhu, G. Li, K. Yang, R. C. Jin, Appl. Catal. B, 2016, 184, 1-11. [65] Y. N. Chen, G. Q. Zhu, M. Hojamberdiev, J. Z. Gao, R. L. Zhu, C. H. Wang, X. M. Wei, P. Liu, J. Hazard. Mater., 2018, 344, 42-54. [66] J. Di, J. X. Xia, M. X. Ji, L. Xu, S. Yin, Q. Zhang, Z. G. Chen, H. M. Li, Carbon, 2016, 98, 613-623. [67] M. Arif, M. Zhang, J. C. Yao, H. F. Yin, P. F. Li, I. Hussain, X. H. Liu, J. Alloy. Compd., 2019, 792, 878-893. |
[1] | Yiqi Ren, Lin Tao, Chunzhi Li, Sanjeevi Jayakumar, He Li, Qihua Yang. Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives [J]. Chinese Journal of Catalysis, 2021, 42(9): 1576-1585. |
[2] | You Xu, Kaili Ren, Rong Xu. In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1370-1378. |
[3] | Longfu Wei, Changlin Yu, Kai Yang, Qizhe Fan, Hongbing Ji. Recent advances in VOCs and CO removal via photothermal synergistic catalysis [J]. Chinese Journal of Catalysis, 2021, 42(7): 1078-1095. |
[4] | Huizhong Wu, Jiadong Wang, Ruimin Chen, Chaowei Yuan, Jin Zhang, Yuxin Zhang, Jianping Sheng, Fan Dong. Zn-doping mediated formation of oxygen vacancies in SnO2 with unique electronic structure for efficient and stable photocatalytic toluene degradation [J]. Chinese Journal of Catalysis, 2021, 42(7): 1195-1204. |
[5] | Khakemin Khan, Lifen Xu, Ming Shi, Jiangshan Qu, Xiaoping Tao, Zhaochi Feng, Can Li, Rengui Li. Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst [J]. Chinese Journal of Catalysis, 2021, 42(6): 1004-1012. |
[6] | Xianglong Yang, Shengyao Wang, Ting Chen, Nan Yang, Kai Jiang, Pei Wang, Shu Li, Xing Ding, Hao Chen. Chloridion-induced dual tunable fabrication of oxygen-deficient Bi2WO6 atomic layers for deep oxidation of NO [J]. Chinese Journal of Catalysis, 2021, 42(6): 1013-1023. |
[7] | Dinghua Zhou, Ke Fan. Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2021, 42(6): 904-919. |
[8] | Qian Ding, Tao Chen, Zheng Li, Zhaochi Feng, Xiuli Wang. Time-resolved infrared spectroscopic investigation of Ga2O3 photocatalysts loaded with Cr2O3-Rh cocatalysts for photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2021, 42(5): 808-816. |
[9] | Naixu Li, Meiyou Huang, Jiancheng Zhou, Maochang Liu, Dengwei Jing. MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O [J]. Chinese Journal of Catalysis, 2021, 42(5): 781-794. |
[10] | Xinglin Wang, Yuanyuan Li, Zhaohui Li. Efficient visible light initiated hydrothiolations of alkenes/alkynes over Ir2S3/ZnIn2S4: Role of Ir2S3 [J]. Chinese Journal of Catalysis, 2021, 42(3): 409-416. |
[11] | Feiyue Ge, Shuquan Huang, Jia Yan, Liquan Jing, Feng Chen, Meng Xie, Yuanguo Xu, Hui Xu, Huaming Li. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity [J]. Chinese Journal of Catalysis, 2021, 42(3): 450-459. |
[12] | Xun Wang, Yu-Xuan Li, Xiao-Hong Yi, Chen Zhao, Peng Wang, Jiguang Deng, Chong-Chen Wang. Photocatalytic Cr(VI) elimination over BUC-21/N-K2Ti4O9 composites: Big differences in performance resulting from small differences in composition [J]. Chinese Journal of Catalysis, 2021, 42(2): 259-270. |
[13] | Bihua Chen, Tong Ding, Xi Deng, Xin Wang, Dawei Zhang, Sanguan Ma, Yongya Zhang, Bing Ni, Guohua Gao. Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions [J]. Chinese Journal of Catalysis, 2021, 42(2): 297-309. |
[14] | Minglun Cheng, Xiongfei Zhang, Yong Zhu, Mei Wang. Selective photocatalytic reduction of CO2 to CO mediated by a [FeFe]-hydrogenase model with a 1,2-phenylene S-to-S bridge [J]. Chinese Journal of Catalysis, 2021, 42(2): 310-319. |
[15] | Jia Zhao, Saisai Wang, Bolin Wang, Yuxue Yue, Chunxiao Jin, Jinyue Lu, Zheng Fang, Xiangxue Pang, Feng Feng, Lingling Guo, Zhiyan Pan, Xiaonian Li. Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms [J]. Chinese Journal of Catalysis, 2021, 42(2): 334-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||