Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (1): 152-163.DOI: 10.1016/S1872-2067(20)63593-8
• Articles • Previous Articles Next Articles
Wenhua Xuea, Wenxi Changa, Xiaoyun Hub, Jun Fana,#(), Enzhou Liua,*(
)
Received:
2020-02-17
Accepted:
2020-03-31
Online:
2021-01-18
Published:
2021-01-18
Contact:
Jun Fan,Enzhou Liu
About author:
#E-mail: fanjun@nwu.edu.cnSupported by:
Wenhua Xue, Wenxi Chang, Xiaoyun Hu, Jun Fan, Enzhou Liu. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution[J]. Chinese Journal of Catalysis, 2021, 42(1): 152-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63593-8
Fig. 2. (a) X-ray diffraction (XRD) patterns of ZnS(en)0.5 prepared with different Zn salts, (b) XRD patterns of ZnS(en)0.5, Cd0.5Zn0.5S(en)x and Cd0.5Zn0.5S nanosheets.
Fig. 4. TEM images of ZnS(en)0.5 prepared with Zn(NO3)2 (a-c), Cd0.5Zn0.5S(en)x (d-f), and Cd0.5Zn0.5S (g-i) nanosheets; (j) EDS line scanning pattern and the corresponding elemental composition of the Cd0.5Zn0.5S nanosheets; (k) Atomic force microscopy (AFM) image of the prepared Cd0.5Zn0.5S nanosheets.
Fig. 8. (a) Photocatalytic performance of the Cd0.5Zn0.5S nanoparticles and Cd0.5Zn0.5S(en)x and Cd0.5Zn0.5S nanosheets. (b) H2 production over various NiCo2S4/Cd0.5Zn0.5S heterojunctions. (c, d) Wavelength-dependent photocatalytic H2 production over 7%-NiCo2S4/Cd0.5Zn0.5S. (e) H2 production over the samples under visible-light irradiation. (f) H2 production in pure water over Cd0.5Zn0.5S nanoparticles, Cd0.5Zn0.5S nanosheets, and 7%-NiCo2S4/Cd0.5Zn0.5S.
Samples | Specific surface area (m2/g) | Pore diameter (nm) |
---|---|---|
Cd0.5Zn0.5S particles | 35.1 | 4.6 |
Cd0.5Zn0.5S nanosheets | 62.4 | 20.6 |
Cd0.5Zn0.5S(en)x | 121.6 | 7.2 |
7%-NiCo2S4/Cd0.5Zn0.5S | 65.9 | 19.8 |
Table 1 N2 adsorption-desorption results.
Samples | Specific surface area (m2/g) | Pore diameter (nm) |
---|---|---|
Cd0.5Zn0.5S particles | 35.1 | 4.6 |
Cd0.5Zn0.5S nanosheets | 62.4 | 20.6 |
Cd0.5Zn0.5S(en)x | 121.6 | 7.2 |
7%-NiCo2S4/Cd0.5Zn0.5S | 65.9 | 19.8 |
Fig. 10. (a) X-ray photoelectron valence-band (VB) spectra of the Cd0.5Zn0.5S nanosheets. (b) UV photoelectron spectrum of the Cd0.5Zn0.5S nanosheets. (c) UV photoelectron spectrum of the NiCo2S4 nanoparticles.
Fig. 11. PL spectra after ?OH detection (a, b) and in situ EPR spectra (c, d) of the samples, (e, f) PL spectra of the samples and the charge-transfer route of the binary composites.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[5] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[6] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[7] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[8] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[9] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[10] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[11] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[12] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[13] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[14] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[15] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||