Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (2): 347-355.DOI: 10.1016/S1872-2067(20)63668-3
• Articles • Previous Articles Next Articles
Wenjie Tanga, Juanrong Chenb, Zhengliang Yina, Weichen Shenga,*(), Fengjian Lina, Hui Xub, Shunsheng Caoa,#(
)
Received:
2020-04-16
Accepted:
2020-05-29
Online:
2021-02-18
Published:
2021-01-21
Contact:
Weichen Sheng,Shunsheng Cao
About author:
#E-mail: sscao@ujs.edu.cnSupported by:
Wenjie Tang, Juanrong Chen, Zhengliang Yin, Weichen Sheng, Fengjian Lin, Hui Xu, Shunsheng Cao. Complete removal of phenolic contaminants from bismuth-modified TiO2 single-crystal photocatalysts[J]. Chinese Journal of Catalysis, 2021, 42(2): 347-355.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63668-3
Fig. 1. (a) Schematic of the preparation of Bi-SCTiO2 nanorods; SEM (b), TEM (c), HRTEM (d), and SAED (e) images of Bi-SCTiO2; STEM mapping of the Bi-SCTiO2 photocatalyst ((g) Ti; (h) O; (i) Bi).
Fig. 2. (a) XRD patterns of SCTiO2 and Bi-SCTiO2; XPS profiles in the full-scale (b), Ti 2p (c), O 1s (d), and C 1s (e) regions of the SCTiO2 and Bi-SCTiO2 samples; (f) the Bi 4f region for the Bi-SCTiO2 sample.
Fig. 3. Photocatalytic degradation (a) and corresponding fitting curves (b) of 4-NP; (c) Effect of the initial concentration of 4-NP on the performance of Bi-SCTiO2; photocatalytic degradation (d) and corresponding fitting curves (e) of phenol; (f) Effect of the initial concentration of phenol on the performance of Bi-SCTiO2.
Fig. 4. The effects of pH (a), metal cations (b), Cl- (c), HCO3- (d), SO42- (e), and water matrix (f) on the degradation of phenol (initial concentration of phenol = 10 mg/L) under simulated sunlight irradiation.
Fig. 5. (a) Photocatalytic performance of Bi-SCTiO2 for degrading 4-NP; ESR spectra of DMPO-?OH (b), DMPO-?O2- (c), and TEMPO-h+ (d) over SCTiO2 and Bi-SCTiO2.
Fig. 6. UV-vis spectra (a) and corresponding bandgap (b) of the SCTiO2 and Bi-SCTiO2; (c) transient photocurrent responses; (d) EIS of SCTiO2 and Bi-SCTiO2.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[7] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[14] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[15] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||