Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (3): 470-481.DOI: 10.1016/S1872-2067(20)63678-6
• Articles • Previous Articles Next Articles
Yuan Tana,b, Xiaoyan Liua,*(), Leilei Zhanga, Fei Liua, Aiqin Wanga, Tao Zhanga,c
Received:
2020-05-19
Accepted:
2020-06-23
Online:
2021-03-18
Published:
2021-01-23
Contact:
Xiaoyan Liu
About author:
*Tel:+86-411-84379416;Fax:+86-411-84691570; E-mail: xyliu2003@dicp.ac.cnSupported by:
Yuan Tan, Xiaoyan Liu, Leilei Zhang, Fei Liu, Aiqin Wang, Tao Zhang. Producing of cinnamyl alcohol from cinnamaldehyde over supported gold nanocatalyst[J]. Chinese Journal of Catalysis, 2021, 42(3): 470-481.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63678-6
Fig. 3. The catalytic performances over the 1.0% Au25/ZnAl-300 catalyst with different solvents. Reaction conditions: cinnamaldehyde 0.25 mmol,catalyst 50 mg (Au 1.0 mol%),H2 pressure 15 atm,130 °C,5 h.
Entry | Catalyst | Size (nm) | Conv. (%) | Sel. (%) | ||||
---|---|---|---|---|---|---|---|---|
COL | HCAL | HCOL | ||||||
1 | 1.1%Au25/ZnAl-300 | 1.7 b | 98.3 | 95.4 | 0 | 4.5 | ||
2 | 1.0%Au25/MgAl-300 | 2.2 b | 99.2 | 39.5 | 13.6 | 38.4 | ||
3 | 1.0%Au25/NiAl-300 | 3.2 b | 100 | 0 | 0 | 86.7 | ||
4 | 1.0%Au/ZnAl-300(DP) a | 2.6 b | 61.5 | 85.9 | 3.7 | 3.6 | ||
5 | 1.0%Au/ZrO2 c | 3.3 | 75.7 | 50.0 | 17.3 | 16.8 | ||
6 | 0.8%Au/Fe2O3 c | 1.8 | 93.0 | 45.4 | 4.9 | 3.6 | ||
7 | 1.5%Au/TiO2 d | 4.1 | 51.9 | 14.6 | 0 | 0 | ||
8 | 1.1%Au25/ZnAl-HT | 1.4 | 26.8 | 43.6 | 1.6 | 0 | ||
9 | ZnAl-300 | — | 9.6 | 23.9 | 3.1 | 0 | ||
10 | 1.1%Au25/ZnAl-300 e | 1.7 | 28.4 | 35.2 | 0 | 0 |
Table 1 Catalytic results for the hydrogenation of CAL over the gold catalysts in this work.
Entry | Catalyst | Size (nm) | Conv. (%) | Sel. (%) | ||||
---|---|---|---|---|---|---|---|---|
COL | HCAL | HCOL | ||||||
1 | 1.1%Au25/ZnAl-300 | 1.7 b | 98.3 | 95.4 | 0 | 4.5 | ||
2 | 1.0%Au25/MgAl-300 | 2.2 b | 99.2 | 39.5 | 13.6 | 38.4 | ||
3 | 1.0%Au25/NiAl-300 | 3.2 b | 100 | 0 | 0 | 86.7 | ||
4 | 1.0%Au/ZnAl-300(DP) a | 2.6 b | 61.5 | 85.9 | 3.7 | 3.6 | ||
5 | 1.0%Au/ZrO2 c | 3.3 | 75.7 | 50.0 | 17.3 | 16.8 | ||
6 | 0.8%Au/Fe2O3 c | 1.8 | 93.0 | 45.4 | 4.9 | 3.6 | ||
7 | 1.5%Au/TiO2 d | 4.1 | 51.9 | 14.6 | 0 | 0 | ||
8 | 1.1%Au25/ZnAl-HT | 1.4 | 26.8 | 43.6 | 1.6 | 0 | ||
9 | ZnAl-300 | — | 9.6 | 23.9 | 3.1 | 0 | ||
10 | 1.1%Au25/ZnAl-300 e | 1.7 | 28.4 | 35.2 | 0 | 0 |
Fig. 4. Time courses of the yield of cinnamaldehyde and cinnamyl alcohol over the Au25/ZnAl-300 catalyst. Reactions conditions: 130 °C,H2 15 atm,isopropanol as the solvent,cinnamaldehyde 0.25 mmol.
Catalyst | Reaction conditions | Conv. (%) | Sel. (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Solvent | Au (mol%) | Tem. (°C) | PH2 (MPa) | t (h) | ||||
Au25/ZnAl-300 | isopropanol | 1.0 | 130 | 1.5 | 5 15 | 98.3 100 | 95.4 95.7 | This work |
Au/ZnO-CP | isopropanol | 1.0 | 110 | 2 | 0.8 | 100 | ~92 | [ |
Au/MgAlO | ethanol | 2.4 | 120 | 1 | 5 | 96 | 40 | [ |
Au/meso-CeO2 | H2O/ethanol | 1.0 | 100 | 1 | 0.5 | 48 | 97 | [ |
Au25/Fe2O3 Au25/TiO2 | toluene/ethanol | 5.1 | 0 | 0.1 | 3 | 49 46 | 100 100 | [ |
Au/DMF | amide | 1.0 | 60 | 4 | 56 | 94 | 94 | [ |
Au/Mg2AlO | ethanol | 0.2 | 120 | 1 | 2 | 78 | 85 | [ |
Au/5FeAl Au/HDAE | isopropanol | 0.7 0.6 | 100 | 1 | 3 | 20 28 | 67 88 | [ |
Au/TiO2 | ethanol | 6.3 | 60 | 0.1 | — | 50 | 47 | [ |
Au/FeOOH | ethanol | 14.8 | 60 | 0.1 | — | 50 | 91 | [ |
Au/Al2O3 | ethanol | 0.1 | 100 | 8.5 | 2.8 | 94 | 89 | [ |
Table 2 Catalytic results reported recently for hydrogenation of CAL to COL over the supported gold catalysts.
Catalyst | Reaction conditions | Conv. (%) | Sel. (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Solvent | Au (mol%) | Tem. (°C) | PH2 (MPa) | t (h) | ||||
Au25/ZnAl-300 | isopropanol | 1.0 | 130 | 1.5 | 5 15 | 98.3 100 | 95.4 95.7 | This work |
Au/ZnO-CP | isopropanol | 1.0 | 110 | 2 | 0.8 | 100 | ~92 | [ |
Au/MgAlO | ethanol | 2.4 | 120 | 1 | 5 | 96 | 40 | [ |
Au/meso-CeO2 | H2O/ethanol | 1.0 | 100 | 1 | 0.5 | 48 | 97 | [ |
Au25/Fe2O3 Au25/TiO2 | toluene/ethanol | 5.1 | 0 | 0.1 | 3 | 49 46 | 100 100 | [ |
Au/DMF | amide | 1.0 | 60 | 4 | 56 | 94 | 94 | [ |
Au/Mg2AlO | ethanol | 0.2 | 120 | 1 | 2 | 78 | 85 | [ |
Au/5FeAl Au/HDAE | isopropanol | 0.7 0.6 | 100 | 1 | 3 | 20 28 | 67 88 | [ |
Au/TiO2 | ethanol | 6.3 | 60 | 0.1 | — | 50 | 47 | [ |
Au/FeOOH | ethanol | 14.8 | 60 | 0.1 | — | 50 | 91 | [ |
Au/Al2O3 | ethanol | 0.1 | 100 | 8.5 | 2.8 | 94 | 89 | [ |
Catalyst | Size (nm) | Conv. (%) | ||||
---|---|---|---|---|---|---|
Styrene a | Styrene b | Benzaldehyde b | ||||
1.1% Au25/ZnAl-300 | 1.7 | 3.8 | 5.1 | 77.7 | ||
1.0% Au25/MgAl-300 | 2.2 | 67.5 | 58.2 | 95.1 | ||
1.0% Au/ZrO2 | 3.1 | 71.4 | 97.2 | 100 |
Table 3 Control experiments with styrene and benzaldehyde as the substrates over Au catalysts.
Catalyst | Size (nm) | Conv. (%) | ||||
---|---|---|---|---|---|---|
Styrene a | Styrene b | Benzaldehyde b | ||||
1.1% Au25/ZnAl-300 | 1.7 | 3.8 | 5.1 | 77.7 | ||
1.0% Au25/MgAl-300 | 2.2 | 67.5 | 58.2 | 95.1 | ||
1.0% Au/ZrO2 | 3.1 | 71.4 | 97.2 | 100 |
Fig. 5. ATR-IR spectra of the liquid cinnamyl aldehyde (a) and in-situ DRIFTS of the adsorbed CAL over the catalysts: (b) Au25/NiAl-300; (c) Au25/MgAl-300; (d) Au25/ZnAl-300 at 25 °C.
Entry | Peak position (cm-1) | Group | Intensity | Vibration type | Ref. |
---|---|---|---|---|---|
1 | 3666 | -OH | strong | Free -OH | [ |
2 | 3082 3061 | =CH- | weak | -CH stretching vibration in aromatic or olefin | [ |
3 | 3025 | | weak | -CH stretching vibration in benzene ring | [ |
4 | 2928 2856 | -CH2 | strong | -CH asymmetric and symmetrical stretching vibration in saturated alkane | [ |
5 | 2812 2741 | -CHO | strong | -CH asymmetric and symmetrical stretching vibration in aldehyde | [ |
6 | 1688 | C=O | strong | C=O stretching vibration in unsaturated aldehyde | [ |
7 | 1626 | C=C | medium | C=C stretching vibration in conjugate alkene | [ |
8 | 1604 1576 1494 | | weak | skeleton stretching vibration in benzene ring | [ |
9 | 1452 1392 | =CH- | weak | -CH asymmetric and symmetrical bending vibration in olefin | [ |
10 | 1293 1250 | =CH- | weak | -CH in-plane bending vibration in olefin | [ |
11 | 1072 | | weak | -CH in-plane bending vibration in benzene ring | [ |
12 | 976 | =CH- | weak | -CH out-of-plane bending vibration in olefin | [ |
Table 4 The attribution of peaks in FTIR spectra of the hydrogenation process of CAL over the Au25/NiAl-300 catalyst.
Entry | Peak position (cm-1) | Group | Intensity | Vibration type | Ref. |
---|---|---|---|---|---|
1 | 3666 | -OH | strong | Free -OH | [ |
2 | 3082 3061 | =CH- | weak | -CH stretching vibration in aromatic or olefin | [ |
3 | 3025 | | weak | -CH stretching vibration in benzene ring | [ |
4 | 2928 2856 | -CH2 | strong | -CH asymmetric and symmetrical stretching vibration in saturated alkane | [ |
5 | 2812 2741 | -CHO | strong | -CH asymmetric and symmetrical stretching vibration in aldehyde | [ |
6 | 1688 | C=O | strong | C=O stretching vibration in unsaturated aldehyde | [ |
7 | 1626 | C=C | medium | C=C stretching vibration in conjugate alkene | [ |
8 | 1604 1576 1494 | | weak | skeleton stretching vibration in benzene ring | [ |
9 | 1452 1392 | =CH- | weak | -CH asymmetric and symmetrical bending vibration in olefin | [ |
10 | 1293 1250 | =CH- | weak | -CH in-plane bending vibration in olefin | [ |
11 | 1072 | | weak | -CH in-plane bending vibration in benzene ring | [ |
12 | 976 | =CH- | weak | -CH out-of-plane bending vibration in olefin | [ |
Fig. 6. In-situ DRIFTS of the hydrogenation process of CAL with increasing temperature after introducing 1.5 MPa of hydrogen over the catalysts of Au25/NiAl-300 (a),Au25/MgAl-300 (b),and Au25/ZnAl-300
Fig. 8. The HAADF-STEM images of Au25/ZnAl-300 catalyst before and after using three times in hydrogenation of cinnamaldehyde. Reaction conditions: 130 °C,H2 pressure 15 atm,cinnamaldehyde 0.25 mmol,solvent 5 mL isopropanol,catalyst 50 mg.
Fig. 9. The conversion of CAL and the selectivity of COL with the recycle times. Reactions conditions: 130 °C,H2 pressure 15 atm,cinnamaldehyde 0.25 mmol,solvent 5 mL isopropanol,catalyst 50 mg. After each test,the catalyst was washed with isopropanol and separated by centrifugation. Then,the new reactant mixture added to the reactor and moved to a next run.
|
[1] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[2] | Fengwei Zhang, Hefang Guo, Mengmeng Liu, Yang Zhao, Feng Hong, Jingjing Li, Zhengping Dong, Botao Qiao. Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst [J]. Chinese Journal of Catalysis, 2023, 48(5): 195-204. |
[3] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[4] | Mengru Wang, Yi Wang, Xiaoling Mou, Ronghe Lin, Yunjie Ding. Design strategies and structure-performance relationships of heterogeneous catalysts for selective hydrogenation of 1,3-butadiene [J]. Chinese Journal of Catalysis, 2022, 43(4): 1017-1041. |
[5] | Feng Hong, Shengyang Wang, Junying Zhang, Junhong Fu, Qike Jiang, Keju Sun, Jiahui Huang. Strong metal-support interaction boosting the catalytic activity of Au/TiO2 in chemoselective hydrogenation [J]. Chinese Journal of Catalysis, 2021, 42(9): 1530-1537. |
[6] | Dan Zhou, Leilei Zhang, Wengang Liu, Gang Xu, Ji Yang, Qike Jiang, Aiqin Wang, Jianzhong Yin. Reaction kinetics and phase behavior in the chemoselective hydrogenation of 3-nitrostyrene over Co-N-C single-atom catalyst in compressed CO2 [J]. Chinese Journal of Catalysis, 2021, 42(9): 1617-1624. |
[7] | Xiao Chen, Chuang Shi, Changhai Liang. Highly selective catalysts for the hydrogenation of alkynols: A review [J]. Chinese Journal of Catalysis, 2021, 42(12): 2105-2121. |
[8] | Hua Liu, Mengqian Chai, Guangxian Pei, Xiaoyan Liu, Lin Li, Leilei Kang, Aiqin Wang, Tao Zhang. Effect of IB-metal on Ni/SiO2 catalyst for selective hydrogenation of acetylene [J]. Chinese Journal of Catalysis, 2020, 41(7): 1099-1108. |
[9] | Nian Hu, Xiao-Yun Li, Si-Ming Liu, Zhao Wang, Xiao-Ke He, Yue-Xin Hou, Yu-Xiang Wang, Zhao Deng, Li-Hua Chen, Bao-Lian Su. Enhanced stability of highly-dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation [J]. Chinese Journal of Catalysis, 2020, 41(7): 1081-1090. |
[10] | Juhong Lian, Yuchao Chai, Yu Qi, Xiangyang Guo, Naijia Guan, Landong Li, Fuxiang Zhang. Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation [J]. Chinese Journal of Catalysis, 2020, 41(4): 598-603. |
[11] | Zhongzhe Wei, Fangjun Shao, Jianguo Wang. Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles [J]. Chinese Journal of Catalysis, 2019, 40(7): 980-1002. |
[12] | Yuzhuo Chen, Xiangqian Kong, Shanjun Mao, Zhe Wang, Yutong Gong, Yong Wang. Study of the role of alkaline sodium additive in selective hydrogenation of phenol [J]. Chinese Journal of Catalysis, 2019, 40(10): 1516-1524. |
[13] | Weiwei Lin, Haiyang Cheng, Xiaoru Li, Chao Zhang, FengyuZhao, Masahiko Arai. Layered double hydroxide-like Mg3Al1-xFex materials as supports for Ir catalysts:Promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde [J]. Chinese Journal of Catalysis, 2018, 39(5): 988-996. |
[14] | Ruijie Gao, Lun Pan, Zhengwen Li, Xiangwen Zhang, Li Wang, Jijun Zou. Cobalt nanoparticles encapsulated in nitrogen-doped carbon for room-temperature selective hydrogenation of nitroarenes [J]. Chinese Journal of Catalysis, 2018, 39(4): 664-672. |
[15] | Dongdong Yin, Hangxing Ren, Chuang Li, Jinxuan Liu, Changhai Liang. Highly selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over MIL-101(Cr)-NH2 supported Pd catalyst at low temperature [J]. Chinese Journal of Catalysis, 2018, 39(2): 319-326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||