Chinese Journal of Catalysis ›› 2023, Vol. 49: 160-167.DOI: 10.1016/S1872-2067(23)64433-X
Previous Articles Next Articles
Zizi Lia, Jia-Wei Wanga,b,*(), Yanjun Huanga, Gangfeng Ouyanga,c,d,*(
)
Received:
2023-03-01
Accepted:
2023-03-16
Online:
2023-06-18
Published:
2023-04-04
Contact:
*E-mail: wangjw25@mail2.sysu.edu.cn (J.-W. Wang),cesoygf@mail.sysu.edu.cn (G. Ouyang).
Supported by:
Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system[J]. Chinese Journal of Catalysis, 2023, 49: 160-167.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64433-X
Scheme 1. Molecular structures of the catalysts (CoFPc & CoPc), photosensitizer (CuBCP) and sacrificial agent (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole, BIH) used in this study.
Molecule | Hirshfeld population (e) | HOMO (eV) | LUMO (eV) | *COOH (eV) | *CO (eV) |
---|---|---|---|---|---|
CoFPc | 0.2127 | -5.64 | -3.29 | 1.080 | -0.161 |
CoPc | 0.2038 | -5.31 | -2.89 | 1.129 | -0.114 |
Co8FPc | N.A. | N.A. | N.A. | 1.089 | -0.155 |
Table 1 The Hirshfeld population (e), HOMO, LUMO energy levels (eV) of CoFPc and CoPc, and the Gibbs free energy (eV) of CoFPc, Co8FPc and CoPc involved in CO2 reduction.
Molecule | Hirshfeld population (e) | HOMO (eV) | LUMO (eV) | *COOH (eV) | *CO (eV) |
---|---|---|---|---|---|
CoFPc | 0.2127 | -5.64 | -3.29 | 1.080 | -0.161 |
CoPc | 0.2038 | -5.31 | -2.89 | 1.129 | -0.114 |
Co8FPc | N.A. | N.A. | N.A. | 1.089 | -0.155 |
Fig. 1. (a) Time profiles of photocatalytic CO (star) and H2 (diamond) formation with CuBCP/CoFPc (red) or CuBCP/CoPc (blue) system. (b) Φ values for CO (gray) and H2 (pale gray) formation in CuBCP/CoFPc and CuBCP/CoPc systems. (c) Mass spectra via gas chromatography of the generated gas from a mixture of CoFPc (0.05 mmol L?1), CuBCP (0.5 mmol L?1), xantphos (1.0 mmol L?1), PhOH (5.0 vol%), and BIH (20 mmol L?1) in 4 mL CH3CN/TEA (v:v = 5:1) within 1 h of 425 nm irradiation under 1 atm 13CO2. (d) Comparison of CO (red) and H2 (pale red) with noble-metal benchmarking PSs (0.50 mmol L?1 PS/0.05 mmol L?1 catalyst).
Fig. 2. CVs of 0.5 mmol L?1 CoFPc (a) and CoPc (b) under N2 (violet), CO2 (blue) or CO2 with 5 vol% PhOH added in CH3CN/NMP (red). (c) Calculated electron density distribution of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of CoFPc and CoPc, at PBE0/def2-SVP level. (d) Gibbs free energy profiles of CoFPc and CoPc.
Fig. 3. Overview (a) and magnified (b) IR-SEC spectra of 1.0 mmol L?1 of CoFPc in THF/CD3CN (v:v = 1:1) under CO2 under different applied potentials. Inset in (b) shows the calculated structure of the Co(III)-COOH species in CoFPc and the C=O stretching frequency, which is consistent with the IR-SEC results.
|
[1] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[2] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[3] | Chengcheng Chen, Fangting Liu, Qiaoyu Zhang, Zhengguo Zhang, Qiong Liu, Xiaoming Fang. Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 46(3): 91-102. |
[4] | Lijing Wang, Tianyi Yang, Bo Feng, Xiangyu Xu, Yuying Shen, Zihan Li, Arramel , Jizhou Jiang. Constructing dual electron transfer channels to accelerate CO2 photoreduction guided by machine learning and first-principles calculation [J]. Chinese Journal of Catalysis, 2023, 54(11): 265-277. |
[5] | Ruiyu Zhong, Yujie Liang, Fei Huang, Shinuo Liang, Shengwei Liu. Regulating interfacial coupling of 1D crystalline g-C3N4 nanorods with 2D Ti3C2Tx MXene for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 109-122. |
[6] | Ke Wang, Miao Cheng, Nan Wang, Qianyi Zhang, Yi Liu, Junwei Liang, Jie Guan, Maochang Liu, Jiancheng Zhou, Naixu Li. Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 44(1): 146-159. |
[7] | Lei Cheng, Peng Zhang, Qiye Wen, Jiajie Fan, Quanjun Xiang. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(2): 451-460. |
[8] | Pan Zeng, Cheng Yuan, Genlin Liu, Jiechang Gao, Yanguang Li, Liang Zhang. Recent progress in electronic modulation of electrocatalysts for high-efficient polysulfide conversion of Li-S batteries [J]. Chinese Journal of Catalysis, 2022, 43(12): 2946-2965. |
[9] | Yue Huang, Kai Dai, Jinfeng Zhang, Graham Dawson. Photocatalytic CO2 conversion of W18O49/CdSe-Diethylenetriamine with high charge transfer efficiency: Synergistic effect of LSPR effect and S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2022, 43(10): 2539-2547. |
[10] | Jiaqi Wang, Hao Cheng, Dingqiong Wei, Zhaohui Li. Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light [J]. Chinese Journal of Catalysis, 2022, 43(10): 2606-2614. |
[11] | Xiaoxue Zhao, Mengyang Xu, Xianghai Song, Weiqiang Zhou, Xin Liu, Pengwei Huo. 3D Fe-MOF embedded into 2D thin layer carbon nitride to construct 3D/2D S-scheme heterojunction for enhanced photoreduction of CO2 [J]. Chinese Journal of Catalysis, 2022, 43(10): 2625-2636. |
[12] | Zhichao Lin, Zhan Jiang, Yubo Yuan, Huan Li, Hongxuan Wang, Yirong Tang, Chunchen Liu, Yongye Liang. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109. |
[13] | Fang Li, Xiaoyang Yue, Haiping Zhou, Jiajie Fan, Quanjun Xiang. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. |
[14] | Libo Wang, Bicheng Zhu, Bei Cheng, Jianjun Zhang, Liuyang Zhang, Jiaguo Yu. In-situ preparation of TiO2/N-doped graphene hollow sphere photocatalyst with enhanced photocatalytic CO2 reduction performance [J]. Chinese Journal of Catalysis, 2021, 42(10): 1648-1658. |
[15] | Qinghe Zhang, Yang Xia, Shaowen Cao. “Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces [J]. Chinese Journal of Catalysis, 2021, 42(10): 1667-1676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||