Chinese Journal of Catalysis ›› 2023, Vol. 54: 137-160.DOI: 10.1016/S1872-2067(23)64542-5
• Reviews • Previous Articles Next Articles
Chao Wua, Kangle Lva, Xin Lib,*(), Qin Lia,*(
)
Received:
2023-08-20
Accepted:
2023-09-27
Online:
2023-11-18
Published:
2023-11-15
Contact:
*E-mail: About author:
Xin Li (South China Agricultural University) received his B.S. and Ph.D. degrees in chemical engineering from Zhengzhou University in 2002 and the South China University of Technology in 2007, respectively. Then, he joined the South China Agricultural University as a faculty staff member, and became a professor in 2017. During 2012 and 2019, he worked as a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, and the Department of Chemistry, the University of Utah, respectively. His research interests include photocatalysis, photoelectrochemistry, adsorption, biomass engineering and related materials, and device development (see Supported by:
Chao Wu, Kangle Lv, Xin Li, Qin Li. Dual cocatalysts for photocatalytic hydrogen evolution: Categories, synthesis, and design considerations[J]. Chinese Journal of Catalysis, 2023, 54: 137-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64542-5
Semiconductor | Red (I)-Red (II) cocatalyst | Synthesis strategy | H2 evolution | Ref. (year) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol·h-1·g-1) | Enhancement factor | AQY (%) | Stability | |||||||
TiO2 | I: Pd | two steps | chemical deposition | <400 nm (Xe) | — | 15 | 602 | 301 | NG | NG | [ | ||
II : Pt | hydrothermal | ||||||||||||
TiO2 | I: Pd | two steps | chemical deposition | 420-780 nm (Xe) | TEOA | 15 | 52 | NP | 0.2 (530 nm) | 20 h | [ | ||
II : Au | chemical deposition | ||||||||||||
TiO2 | I: Ti3C2 | one step | hydrothermal | UV-Vis (Xe) | Na2S/Na2SO3 | 25 | 319 | 4 | NG | 30 h | [ | ||
II: MoS2 | |||||||||||||
TiO2 | I: rGO | one step | impregnation | 420-780 nm (Xe) | Methanol | 15 | 0.53 | NG | NG | 16 h | [ | ||
II: Ag | |||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 10506 | 193 | 7.5 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 3410 | 50 | 2.4 (365 nm) | 24 h | [ | ||
II: WS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 9738 | 132 | 6.8 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 6426 | 87 | 4.2 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Au | two steps | photodeposition | 356 nm (LED) | Ethanol | 50 | 9616 | 291 | 46 (365 nm) | 36 h | [ | ||
II: NiS1+x | photodeposition | ||||||||||||
TiO2 | I: N-doped carbon | two steps | photodeposition | AM 1.5 (Xe) | TEOA | 10 | 24800 | 10 | 0.8 (365 nm) | 50 h | [ | ||
II: Au | calcination | ||||||||||||
TiO2 | I: Au | one step | chemical deposition | UV-Vis (Xe) | Methanol | 50 | 23666 | 10 | NG | NG | [ | ||
II: Pt | |||||||||||||
TiO2 | I: MoS2 | two steps | hydrothermal | UV(Xe) | Na2S/Na2SO3 | 20 | 129 | 4 | NG | NG | [ | ||
II: TiN | calcination | ||||||||||||
TiO2 | I: rGO | two steps | impregnation | 365 nm (LED) | Methanol | 50 | 207 | 30 | 5.9 (365 nm) | 20 h | [ | ||
II: MoSx | photodeposition | ||||||||||||
TiO2 | I: Ag | two steps | photodeposition | 365 nm (LED) | Methanol | 50 | 2380 | 52 | 9.8 (365 nm) | NG | [ | ||
II: Ag2S | chemical deposition | ||||||||||||
TiO2 | I: Au nanorod | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 20 | 9115 | NG | 9.1 (420 nm) | 20 h | [ | ||
g-C3N4 | II: Pt | photodeposition | |||||||||||
CdS | I: Ni | one step | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 5900 | 4 | NG | NG | [ | ||
II: graphene | |||||||||||||
CdS | I: Au | two steps | chemical deposition | ≥400 nm (Xe) | Na2S/Na2SO3 | 50 | 16350 | 112 | 41 (420 nm) | 20 h | [ | ||
II: PdS | chemical deposition | ||||||||||||
CdS | I: NiS2 | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3334 | 5 | NG | 12 h | [ | ||
II: carbon black | ultrasonication | ||||||||||||
CdS | I: MoS2 | One step | ultrasonication | AM 1.5 | LA | 1 | 168930 | 67 | NG | 25 h | [ | ||
II: SeS2 | |||||||||||||
CdS | I: MoS2 | two steps | hydrothermal | ≥420 nm (Xe) | LA | 100 | 2525 | 13 | NG | 18 h | [ | ||
II: NiS | hydrothermal | ||||||||||||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
g-C3N4 | I: acetylene black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 240 | 320 | NG | 12 h | [ | ||
II: Ni(OH)2 | chemical deposition | ||||||||||||
g-C3N4 | I: Ni | two steps | calcination | ≥420 nm (Xe) | TEOA | 50 | 515 | 406 | NG | 12 h | [ | ||
II: NiS | impregnation | ||||||||||||
g-C3N4 | I: Ti3C2 | two steps | impregnation | AM 1.5 | TEOA | 30 | 5100 | 15 | 3.1 (420 nm) | 6 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: NiS | one step | ultrasonication | UV-Vis (Xe) | TEOA | 10 | 6893 | 41 | NG | NG | [ | ||
II: Ni2P | |||||||||||||
g-C3N4 | I: Au | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 80 | 239 | NG | NG | 35 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: Ni3C | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 1128 | NG | 1.5 (420 nm) | 12 h | [ | ||
II: Ni | calcination | ||||||||||||
g-C3N4 | I: Carbon black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 405 | 810 | NG | 12 h | [ | ||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
ZnIn2S4 | I: Au | one step | self-assembly | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 4175 | 10 | 6.2 (420 nm) | 20 h | [ | ||
II: Pt | |||||||||||||
ZnIn2S4 | I: WN-QDs | one step | hydrothermal | ≥400 nm (Xe) | LA | 20 | 196 | 61 | NP | NP | [ | ||
II: Graphene | |||||||||||||
Zn0.5Cd0.5S | I: rGO | one step | photodeposition | ≥420 nm (Xe) | LA | 30 | 77000 | 82 | NP | 50 h | [ | ||
II: MoS2 | |||||||||||||
Mn0.5Cd0.5S | I: rGO | one step | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 12843 | 4 | 36.4 (420 nm) | 16 h | [ | ||
II: MoS2 | |||||||||||||
CuSe | I: Au | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 4180 | 44 | 0.6 (600 nm) | 24 h | [ | ||
Ⅱ: Pt | chemical deposition | ||||||||||||
Nb2O5 | I: Nb2CTx | two steps | hydrothermal | UV-Vis (Xe) | Methanol | 20 | 682 | NG | 1.6 (313 nm) | 15 h | [ | ||
II: Ag | photodeposition | ||||||||||||
SiC | I: Au | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 30 | 100 | NG | 2.2 (420 nm) | 25 h | [ | ||
II: Pt | photodeposition |
Table 1 Summary of the photocatalyst systems with Red-Red cocatalysts for H2 evolution.
Semiconductor | Red (I)-Red (II) cocatalyst | Synthesis strategy | H2 evolution | Ref. (year) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol·h-1·g-1) | Enhancement factor | AQY (%) | Stability | |||||||
TiO2 | I: Pd | two steps | chemical deposition | <400 nm (Xe) | — | 15 | 602 | 301 | NG | NG | [ | ||
II : Pt | hydrothermal | ||||||||||||
TiO2 | I: Pd | two steps | chemical deposition | 420-780 nm (Xe) | TEOA | 15 | 52 | NP | 0.2 (530 nm) | 20 h | [ | ||
II : Au | chemical deposition | ||||||||||||
TiO2 | I: Ti3C2 | one step | hydrothermal | UV-Vis (Xe) | Na2S/Na2SO3 | 25 | 319 | 4 | NG | 30 h | [ | ||
II: MoS2 | |||||||||||||
TiO2 | I: rGO | one step | impregnation | 420-780 nm (Xe) | Methanol | 15 | 0.53 | NG | NG | 16 h | [ | ||
II: Ag | |||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 10506 | 193 | 7.5 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 3410 | 50 | 2.4 (365 nm) | 24 h | [ | ||
II: WS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 9738 | 132 | 6.8 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 6426 | 87 | 4.2 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Au | two steps | photodeposition | 356 nm (LED) | Ethanol | 50 | 9616 | 291 | 46 (365 nm) | 36 h | [ | ||
II: NiS1+x | photodeposition | ||||||||||||
TiO2 | I: N-doped carbon | two steps | photodeposition | AM 1.5 (Xe) | TEOA | 10 | 24800 | 10 | 0.8 (365 nm) | 50 h | [ | ||
II: Au | calcination | ||||||||||||
TiO2 | I: Au | one step | chemical deposition | UV-Vis (Xe) | Methanol | 50 | 23666 | 10 | NG | NG | [ | ||
II: Pt | |||||||||||||
TiO2 | I: MoS2 | two steps | hydrothermal | UV(Xe) | Na2S/Na2SO3 | 20 | 129 | 4 | NG | NG | [ | ||
II: TiN | calcination | ||||||||||||
TiO2 | I: rGO | two steps | impregnation | 365 nm (LED) | Methanol | 50 | 207 | 30 | 5.9 (365 nm) | 20 h | [ | ||
II: MoSx | photodeposition | ||||||||||||
TiO2 | I: Ag | two steps | photodeposition | 365 nm (LED) | Methanol | 50 | 2380 | 52 | 9.8 (365 nm) | NG | [ | ||
II: Ag2S | chemical deposition | ||||||||||||
TiO2 | I: Au nanorod | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 20 | 9115 | NG | 9.1 (420 nm) | 20 h | [ | ||
g-C3N4 | II: Pt | photodeposition | |||||||||||
CdS | I: Ni | one step | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 5900 | 4 | NG | NG | [ | ||
II: graphene | |||||||||||||
CdS | I: Au | two steps | chemical deposition | ≥400 nm (Xe) | Na2S/Na2SO3 | 50 | 16350 | 112 | 41 (420 nm) | 20 h | [ | ||
II: PdS | chemical deposition | ||||||||||||
CdS | I: NiS2 | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3334 | 5 | NG | 12 h | [ | ||
II: carbon black | ultrasonication | ||||||||||||
CdS | I: MoS2 | One step | ultrasonication | AM 1.5 | LA | 1 | 168930 | 67 | NG | 25 h | [ | ||
II: SeS2 | |||||||||||||
CdS | I: MoS2 | two steps | hydrothermal | ≥420 nm (Xe) | LA | 100 | 2525 | 13 | NG | 18 h | [ | ||
II: NiS | hydrothermal | ||||||||||||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
g-C3N4 | I: acetylene black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 240 | 320 | NG | 12 h | [ | ||
II: Ni(OH)2 | chemical deposition | ||||||||||||
g-C3N4 | I: Ni | two steps | calcination | ≥420 nm (Xe) | TEOA | 50 | 515 | 406 | NG | 12 h | [ | ||
II: NiS | impregnation | ||||||||||||
g-C3N4 | I: Ti3C2 | two steps | impregnation | AM 1.5 | TEOA | 30 | 5100 | 15 | 3.1 (420 nm) | 6 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: NiS | one step | ultrasonication | UV-Vis (Xe) | TEOA | 10 | 6893 | 41 | NG | NG | [ | ||
II: Ni2P | |||||||||||||
g-C3N4 | I: Au | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 80 | 239 | NG | NG | 35 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: Ni3C | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 1128 | NG | 1.5 (420 nm) | 12 h | [ | ||
II: Ni | calcination | ||||||||||||
g-C3N4 | I: Carbon black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 405 | 810 | NG | 12 h | [ | ||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
ZnIn2S4 | I: Au | one step | self-assembly | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 4175 | 10 | 6.2 (420 nm) | 20 h | [ | ||
II: Pt | |||||||||||||
ZnIn2S4 | I: WN-QDs | one step | hydrothermal | ≥400 nm (Xe) | LA | 20 | 196 | 61 | NP | NP | [ | ||
II: Graphene | |||||||||||||
Zn0.5Cd0.5S | I: rGO | one step | photodeposition | ≥420 nm (Xe) | LA | 30 | 77000 | 82 | NP | 50 h | [ | ||
II: MoS2 | |||||||||||||
Mn0.5Cd0.5S | I: rGO | one step | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 12843 | 4 | 36.4 (420 nm) | 16 h | [ | ||
II: MoS2 | |||||||||||||
CuSe | I: Au | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 4180 | 44 | 0.6 (600 nm) | 24 h | [ | ||
Ⅱ: Pt | chemical deposition | ||||||||||||
Nb2O5 | I: Nb2CTx | two steps | hydrothermal | UV-Vis (Xe) | Methanol | 20 | 682 | NG | 1.6 (313 nm) | 15 h | [ | ||
II: Ag | photodeposition | ||||||||||||
SiC | I: Au | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 30 | 100 | NG | 2.2 (420 nm) | 25 h | [ | ||
II: Pt | photodeposition |
Semiconductor | Red (I)-Ox (II) cocatalysts | Synthesis strategy | H2 evolution | Ref. (year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol h-1 g-1) | Enhancement factor | AQY (%) | Stability | ||||||
TiO2 | I: Pt | two steps | chemical deposition | 365 nm (LED) | methanol | 50 | 4200 | 42 | NG | NG | [ | |
II: RuO2 | calcination | |||||||||||
TiO2 | I: Pd | two steps | impregnation | UV-Vis (Xe) | methanol | 100 | 7740 | NG | NG | NG | [ | |
II: IrOx | photodeposition | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | methanol | 50 | 5280 | NG | 11.3 (365 nm) | 9 h | [ | |
II: Co3O4 | photodeposition | |||||||||||
TiO2 | I: Cu | two steps | photodeposition | AM 1.5 | methanol | 20 | 764 | NG | NG | 25 h | [ | |
II: Ti3C2Tx | hydrothermal | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | AM 1.5 | methanol | 10 | 45357 | 187 | NG | NG | [ | |
II: PdOx | calcination | |||||||||||
TiO2 | I: CuO | one step | ball-milling | UV-Vis (Xe) | methanol | 20 | 14300 | NG | NG | NG | [ | |
II: Co3O4 | ||||||||||||
TiO2 | I: Pt | two steps | AL deposition | UV (Xe) | methanol | 35 | 5518 | 5 | NG | NG | [ | |
II: Au | calcination | |||||||||||
CdS | I: rGO | two steps | calcination | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 5450 | 7 | 2.4 (420 nm) | 16 h | [ | |
II: MnOx | self-assembly | |||||||||||
CdS | I: MoS2 | one step | calcination | 400-800 nm (Xe) | LA | 20 | 1200 | 8 | 11.3 (420 nm) | 12 h | [ | |
II: Ni(OH)2 | ||||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 20 | 7400 | 6 | 7.6 (420 nm) | NP | [ | |
II: CoOx | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 40500 | 27 | 36 (420 nm) | 20 h | [ | |
II: Co-Pi | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | hydrothermal | AM 1.5 | — | 100 | 52 | NG | 0.3 (365 nm) | 25 h | [ | |
II: RuO2 | hydrothermal | |||||||||||
CdS | I: carbon dots | two steps | ultrasonication | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 1444 | 5 | NG | 15 h | [ | |
II: NiS | hydrothermal | |||||||||||
CdS | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | LA | 20 | 14888 | 7 | NG | 12 h | [ | |
II: Ti3C2 | hydrothermal | |||||||||||
CdS | I: Ni(II) | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3438 | 2 | NG | 20 h | [ | |
II: PdS | chemical deposition | |||||||||||
P-doped CdS | I: Ag2S | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 4828 | 45 | 49.5 (420 nm) | 12 h | [ | |
Ⅱ: NiS | hydrothermal | |||||||||||
CdSe | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 5300 | 20 | 45 (420 nm) | 16 h | [ | |
II: CoOx | photodeposition | |||||||||||
g-C3N4 | I: Au | two steps | impregnation | ≥420 nm (Xe) | methanol | 50 | 1533 | 12 | 8.61 (420 nm) | 20 h | [ | |
II: CoOx | calcination | |||||||||||
g-C3N4 | I: MoS2 | two steps | hydrothermal | UV-Vis (Xe) | methanol | 20 | 3400 | 366 | 6.4 (420 nm) | 30 h | [ | |
II: Ni(OH)2 | chemical deposition | |||||||||||
Zn0.5Cd0.5S | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 7300 | 36 | 89.0 (420 nm) | 16 h | [ | |
II: PdS | photodeposition | |||||||||||
Mn0.5Cd0.5S | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 1375 | 22 | 16.1 (420 nm) | 12 h | [ | |
II: Cu2-xS | photodeposition | |||||||||||
ZnCdS | I: graphene QDs | two steps | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 10340 | 15 | 22.4 (420 nm) | 25 h | [ | |
II: PdS | chemical deposition | |||||||||||
La2Ti2O7 | I: rGO | two steps | hydrothermal | AM 1.5 | TEOA | 20 | 532 | 9 | NG | NG | [ | |
II: NiFe-LDH | self-assembly | |||||||||||
PbTiO3 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | TEOA | 100 | 350 | NG | NG | NG | [ | |
II: MnOx | photodeposition |
Table 2 Summary of photocatalyst systems with Red-Ox cocatalysts for H2 evolution.
Semiconductor | Red (I)-Ox (II) cocatalysts | Synthesis strategy | H2 evolution | Ref. (year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol h-1 g-1) | Enhancement factor | AQY (%) | Stability | ||||||
TiO2 | I: Pt | two steps | chemical deposition | 365 nm (LED) | methanol | 50 | 4200 | 42 | NG | NG | [ | |
II: RuO2 | calcination | |||||||||||
TiO2 | I: Pd | two steps | impregnation | UV-Vis (Xe) | methanol | 100 | 7740 | NG | NG | NG | [ | |
II: IrOx | photodeposition | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | methanol | 50 | 5280 | NG | 11.3 (365 nm) | 9 h | [ | |
II: Co3O4 | photodeposition | |||||||||||
TiO2 | I: Cu | two steps | photodeposition | AM 1.5 | methanol | 20 | 764 | NG | NG | 25 h | [ | |
II: Ti3C2Tx | hydrothermal | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | AM 1.5 | methanol | 10 | 45357 | 187 | NG | NG | [ | |
II: PdOx | calcination | |||||||||||
TiO2 | I: CuO | one step | ball-milling | UV-Vis (Xe) | methanol | 20 | 14300 | NG | NG | NG | [ | |
II: Co3O4 | ||||||||||||
TiO2 | I: Pt | two steps | AL deposition | UV (Xe) | methanol | 35 | 5518 | 5 | NG | NG | [ | |
II: Au | calcination | |||||||||||
CdS | I: rGO | two steps | calcination | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 5450 | 7 | 2.4 (420 nm) | 16 h | [ | |
II: MnOx | self-assembly | |||||||||||
CdS | I: MoS2 | one step | calcination | 400-800 nm (Xe) | LA | 20 | 1200 | 8 | 11.3 (420 nm) | 12 h | [ | |
II: Ni(OH)2 | ||||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 20 | 7400 | 6 | 7.6 (420 nm) | NP | [ | |
II: CoOx | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 40500 | 27 | 36 (420 nm) | 20 h | [ | |
II: Co-Pi | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | hydrothermal | AM 1.5 | — | 100 | 52 | NG | 0.3 (365 nm) | 25 h | [ | |
II: RuO2 | hydrothermal | |||||||||||
CdS | I: carbon dots | two steps | ultrasonication | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 1444 | 5 | NG | 15 h | [ | |
II: NiS | hydrothermal | |||||||||||
CdS | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | LA | 20 | 14888 | 7 | NG | 12 h | [ | |
II: Ti3C2 | hydrothermal | |||||||||||
CdS | I: Ni(II) | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3438 | 2 | NG | 20 h | [ | |
II: PdS | chemical deposition | |||||||||||
P-doped CdS | I: Ag2S | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 4828 | 45 | 49.5 (420 nm) | 12 h | [ | |
Ⅱ: NiS | hydrothermal | |||||||||||
CdSe | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 5300 | 20 | 45 (420 nm) | 16 h | [ | |
II: CoOx | photodeposition | |||||||||||
g-C3N4 | I: Au | two steps | impregnation | ≥420 nm (Xe) | methanol | 50 | 1533 | 12 | 8.61 (420 nm) | 20 h | [ | |
II: CoOx | calcination | |||||||||||
g-C3N4 | I: MoS2 | two steps | hydrothermal | UV-Vis (Xe) | methanol | 20 | 3400 | 366 | 6.4 (420 nm) | 30 h | [ | |
II: Ni(OH)2 | chemical deposition | |||||||||||
Zn0.5Cd0.5S | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 7300 | 36 | 89.0 (420 nm) | 16 h | [ | |
II: PdS | photodeposition | |||||||||||
Mn0.5Cd0.5S | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 1375 | 22 | 16.1 (420 nm) | 12 h | [ | |
II: Cu2-xS | photodeposition | |||||||||||
ZnCdS | I: graphene QDs | two steps | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 10340 | 15 | 22.4 (420 nm) | 25 h | [ | |
II: PdS | chemical deposition | |||||||||||
La2Ti2O7 | I: rGO | two steps | hydrothermal | AM 1.5 | TEOA | 20 | 532 | 9 | NG | NG | [ | |
II: NiFe-LDH | self-assembly | |||||||||||
PbTiO3 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | TEOA | 100 | 350 | NG | NG | NG | [ | |
II: MnOx | photodeposition |
Fig. 4. TEM (inset: partial enlargement) (a), HRTEM (b), and HAADF-STEM (c) images and corresponding EDS maps of Au and Pt for the Pt/Au NR769/CNNT650 sample. Photocatalytic H2 evolution rates of CNNT650 deposited with different Pt and/or Au NRs under visible-light irradiation (d) and >590 nm irradiation (e). (f) Photocatalytic mechanism of Pt/Au NR769/CNNT650 with LSPR enhancement. Reprinted with permission from Ref. [116]. Copyright 2019, John Wiley and Sons.
Fig. 5. (a) Schematic illustration of Au-induced self-redox deposition formation of core-shell Au@MoS2+x-loaded TiO2 photocatalysts. (b) Production mechanism of Au@MoS2+x. TEM (c) and HRTEM (d) images of TiO2/Au@MoS2+x. (e,f) Schematic diagrams of the enhanced interfacial transfer of photogenerated electrons on the Au@MoS2+x cocatalyst that enables fast photocatalytic H2 evolution. Reprinted with permission from Ref. [163]. Copyright 2023, John Wiley and Sons.
Fig. 6. TEM (a) and HR-TEM (b) images of a typical ZCS@MoS2/rGO. (c) Schematic diagram of ZCS@MoS2/rGO under solar light irradiation. Reprinted with permission from Ref. [68]. Copyright 2016, American Chemical Society.
Fig. 7. TEM image (a), HRTEM image (b), and Corresponding SAED pattern (c) of PdOx@TiO2@Pt. (d-i) EDS maps of PdOx@TiO2@Pt, where the (e) shows the overlaid images of Ti, O, Pd, and Pt. (j) Schematic illustration of the photocatalytic H2-evolution mechanism over the MOx@TiO2@Pt photocatalyst. Reprinted with permission from Ref. [132]. Copyright 2020, American Chemical Society.
Fig. 9. Time-dependent amount (a) and average rate (b) of photocatalytic H2 production over different photocatalysts. Proposed photocatalytic H2 production mechanisms over g-C3N4-1.0%NiS (c), g-C3N4-0.5%Ni (d), and ternary g-C3N4-Ni-NiS (e) composites under visible-light irradiation. Reprinted with permission from Ref. [84]. Copyright 2017, American Chemical Society.
Fig. 10. (a) Comparison of the H2-production rate of Au/CuSe/Pt, Au/CuSe, and Pt/CuSe hybrids. (b) Normalized ΔI probed at 560 and 900 nm for Au, Au/CuSe, and Au/CuSe/Pt. (c) Schematic diagrams of the possible electron-transfer processes in the Au/CuSe/Pt tangential hybrid during the photocatalytic HER. Reprinted with permission from Ref. [127]. Copyright 2020, John Wiley and Sons.
Fig. 11. (a) Comparison of the HER performance of g-C3N4 and g-C3N4-MoS2 with and without M(OH)x, where A is g-C3N4-Ni(OH)2, B is g-C3N4-Co(OH)2, and C is g-C3N4-Fe(OH)3. (b) TRPL spectra of pristine g-C3N4, g-C3N4-MoS2, and its heterostructures with M(OH)x. (c) Schematic illustration of photo-excited charge-carrier separation and the photocatalytic reaction of the ternary g-C3N4-MoS2-Ni(OH)2 photocatalyst. Reprinted with permission from Ref. [67]. Copyright 2020, RSC Pub.
Fig. 12. (a) Calculated Gibbs free energy diagram of the HER on different sites of WO3/C3N4@C. (b) Linear sweep voltammetry plots of ZnIn2S4 and 2 wt% WO3/C3N4@C/ZnIn2S4 in 0.2 mol L-1 Na2SO4 solution measured at a scan rate of 50 mV s-1. (c) Temperature dependence of the reaction rate of ZnIn2S4 and 2 wt% WO3/C3N4@C/ZnIn2S4. (d) Schematic diagram of the Ea difference between ZnIn2S4 and 2 wt% WO3/C3N4@C/ZnIn2S4. Reprinted with permission from Ref. [126]. Copyright 2021, Elsevier.
Fig. 13. (a) Cycling activity results for CdS, CdS@Ti3C2, and CdS@MoS2/Ti3C2. (b) Time-dependent photocatalytic H2 production profile of CdS@MoS2/Ti3C2. (c) Photographs of initial H2-production solutions containing CdS, CdS@Ti3C2, and CdS@MoS2/Ti3C2 and those after 4 h of illumination. (d) Proposed mechanism of charge transfer over ternary CdS@MoS2/Ti3C2 photocatalysts during the photocatalytic HER, where lactic acid (LA) was used as the sacrificial agent. Reprinted with permission from Ref. [138]. Copyright 2023, Elsevier.
Fig. 14. Schematic of photocatalytic H2 evolution and the back reaction over PtO clusters and metallic Pt (m-Pt) NPs. Reprinted with permission from Ref. [178]. Copyright 2013, Springer Nature.
Fig. 15. (a) Schematic of the preparation of Ti3C2-TiO2-MoS2 catalysts. SEM images of Ti3C2 (b) and Ti3C2-TiO2-MoS2 (c) samples. (d) EDS map of Ti3C2-TiO2-MoS2. Reprinted with permission from Ref. [110]. Copyright 2021, John Wiley and Sons.
Fig. 16. (a) Schematic representation for the formation process of Au@Pt/ZIS. (b,c) TEM image of Au16@Pt/ZIS. (d) STEM-HAADF images and EDS maps of Au16@Pt NPs. Reprinted with permission from Ref. [65]. Copyright 2021, Elsevier.
Fig. 17. (a) Schematic of the preparation of CdS@MoS2/Ti3C2 composites. TEM images ofTi3C2 (b) and MoS2/Ti3C2 (c). TEM (d) and HRTEM (e) images of CdS@MoS2/Ti3C2. Reprinted with permission from Ref. [138]. Copyright 2023, Elsevier.
Fig. 18. (a) Schematic diagram of the preparation of CdS@MoS2@Co-Pi composite photocatalysts. (b) Typical TEM image of as-prepared blank CdS NWs. (c,d) Typical TEM images of CdS@MoS2@Co-Pi composite. Reprinted with permission from Ref. [137]. Copyright 2019, American Chemical Society.
Fig. 19. Schematic illustration of the electron-transfer pathway in Au-Pt-SiC and Pt-Au-SiC samples. Reprinted with permission from Ref. [128]. Copyright 2022, Elsevier.
Fig. 21. Three configurations of dual reductive cocatalyst-semiconductor systems with optimal electron-transport paths: core-shell (a), dispersed (b), and the adjacent (c) structures.
Fig. 22. (a) TEM and HRTEM images of CN08-2. (b) Schematic of Ni3C@Ni/g-C3N4 photocatalysts. (c) Average H2-evolution rate over g-C3N4-8-Ni3C, CN08-0.5, CN08-1, CN08-2, CN08-3, and g-C3N4-1Pt systems. (d) Schematic of the photo-induced charge separation process in the Ni3C/g-C3N4 composite photocatalysts. Reprinted with permission from Ref. [125]. Copyright 2021, Elsevier.
Fig. 23. Fig. 23. TEM (a,b) and HRTEM (c) images of a TiO2/Ag-Ag2S photocatalyst. (d) The energy-band structures of TiO2, Ag and Ag2S. (e) Schematic diagram illustrating the photocatalytic H2-evolution mechanism of TiO2/Ag-Ag2S. Reprinted with permission from Ref. [115]. Copyright 2018, Elsevier.
Fig. 24. (a) HAADF-STEM images and corresponding EDS maps of Au/Pd-TiO2. Average H2 production rates of TiO2-based photocatalysts (15 mg) under broad-spectrum irradiation (b) and schematics of the corresponding charge kinetics (c). Reprinted with permission from Ref. [75]. Copyright 2019, John Wiley and Sons.
Fig. 25. Three configurations of oxidative and reductive co-catalyst-semiconductor systems promoting spatial segregation of electron-hole pairs: internal-external distribution using hollow structures (a), crystallographically determined distributions based on different facet types (b), and tip-side distribution using nanorods (c).
Fig. 26. (a) Architecture of PdS@CdS@MoS2. (b) HAADF-STEM image of a quarter of a PdS@CdS@MoS2 nanosphere and the corresponding EDS maps. (c) Cross-sectional view of a chloroplast structure. (d) Diagrams of photoinduced charge carrier migration on a PdS@CdS@MoS2 hollow sphere. Reprinted with permission from Ref. [184]. Copyright 2022, John Wiley and Sons.
Fig. 27. (a) TEM images of TiO2-Co3O4-Pt samples. (b) Schematics of selective deposition of Pt and Co3O4 on {101} and {001} crystal surfaces of TiO2, respectively, and the related hydrogen production mechanism of TiO2-Co3O4-Pt. Reprinted with permission from Ref. [130]. Copyright 2016, Elsevier. (c,d) SEM images of Pt/{001}PbTiO3 and MnOx/{001}PbTiO3 (insets show corresponding structural schematics. (e) Schematic of the process of loading redox cocatalysts on single-domain ferroelectric crystals where A is the electron acceptor and D is the electron donor. Reprinted with permission from Ref. [145]. Copyright 2014, Royal Society of Chemistry.
Fig. 28. (a) Schematic of SrTiO3 nanocrystals changing from a 6-facet to 18-facet structure. (b) Morphology of 6-facet SrTiO3 nanocrystals. (c) Morphology of 18-facet SrTiO3 nanocrystals. SEM images of 18-facet and 6-facet SrTiO3 nanocrystals with simultaneous photodeposition of Pt and Co3O4 as cocatalysts: Pt-Co3O4/18-facet SrTiO3 (d) and Pt-Co3O4/6-facet SrTiO3 (e). Reprinted with permission from Ref. [188]. Copyright 2016, RSC Publishing.
Fig. 29. TEM images of (RuO2/CdS)@MoS2 (a) and RuO2/CdS/MoS2 (b,c). (d) Hydrogen and oxygen production under illumination over time. (e) Schematic of charge-transfer routes. Reprinted with permission from Ref. [83]. Copyright 2020, John Wiley and Sons.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[5] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[6] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[7] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[8] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[9] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[10] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[11] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[12] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[13] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[14] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[15] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||