Chinese Journal of Catalysis ›› 2023, Vol. 54: 250-264.DOI: 10.1016/S1872-2067(23)64547-4
• Articles • Previous Articles Next Articles
Yu Wanga,b, Jaime Gallegob,c, Wei Wanga,b, Phillip Timmerb, Min Dinga, Alexander Spriewald Lucianob, Tim Weberb, Lorena Glatthaarb, Yanglong Guoa,*(), Bernd M. Smarslyb,*(
), Herbert Overb,*(
)
Received:
2023-08-30
Accepted:
2023-10-19
Online:
2023-11-18
Published:
2023-11-15
Contact:
*E-mail: Supported by:
Yu Wang, Jaime Gallego, Wei Wang, Phillip Timmer, Min Ding, Alexander Spriewald Luciano, Tim Weber, Lorena Glatthaar, Yanglong Guo, Bernd M. Smarsly, Herbert Over. Unveiling the self-activation of exsolved LaFe0.9Ru0.1O3 perovskite during the catalytic total oxidation of propane[J]. Chinese Journal of Catalysis, 2023, 54: 250-264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64547-4
Sample | Ru/La+Fe+Ru (mol%) a | ABET (m2·g-1) | Micro strain b (%) | Atomic ratio c (mol%) | Run c (mol%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ru | La | Fe | Ruα | Ruβ | Ru0 | |||||
LFO | — | 9 | 0.17 | 0 | 55 | 45 | — | — | — | |
LFRO | 5.1 | 12 | 0.27 | 8 | 54 | 38 | 79 | 21 | 0 | |
LFRO_800R | 5.0 | 11 | 0.21 | 13 | 55 | 32 | 0 | 12 | 88 |
Table 1 Physicochemical properties of the studied perovskite samples. Pure LFO, LFRO, and LFRO_800R.
Sample | Ru/La+Fe+Ru (mol%) a | ABET (m2·g-1) | Micro strain b (%) | Atomic ratio c (mol%) | Run c (mol%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ru | La | Fe | Ruα | Ruβ | Ru0 | |||||
LFO | — | 9 | 0.17 | 0 | 55 | 45 | — | — | — | |
LFRO | 5.1 | 12 | 0.27 | 8 | 54 | 38 | 79 | 21 | 0 | |
LFRO_800R | 5.0 | 11 | 0.21 | 13 | 55 | 32 | 0 | 12 | 88 |
Fig. 2. Ru 3d + C 1s XPS spectra for LFO, LFRO, and LFRO_800R. The Ru 3d spectra are decomposed into Ruα (purple), Ruβ (green), and metallic Ru (Ru0, orange).
Fig. 3. Two consecutive light-off curves of LFRO and LFRO_800R for propane combustion reaction. The light-off curve of LFO_1st and LFRO_800R_1st_cooling are also provided for comparison.
Fig. 4. Self‐activation identified with two consecutive propane combustion light-off curves (1st and 2nd) of LFRO_800R_200O, LFRO_800R_300O and LFRO_800R_400O.
Sample | 1st | 2nd | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T10 (°C) | T50 (°C) | T90 (°C) | STY a | Ea (kJ/mol) | T10 (°C) | T50 (°C) | T90 (°C) | STY a | Ea (kJ·mol-1) | ||
LFRO | 247 | 257 | 302 | 4.96 | 118 | 250 | 267 | 305 | 4.0 | 94 | |
LFRO_800R | 293 | 304 | 308 | 0.27 | 146 | 218 | 230 | 240 | 23.5 | 109 | |
LFRO_800R_200O | 285 | 297 | 300 | 0.35 | 125 | 220 | 234 | 249 | 20.6 | 106 | |
LFRO_800R_300O | 262 | 287 | 294 | 3.2 | 111 | 224 | 243 | 254 | 19.8 | 95 | |
LFRO_800R_400O | 219 | 235 | 248 | 22.3 | 97 | 219 | 235 | 250 | 23.0 | 98 |
Table 2 Catalytic behavior and kinetic parameters of the investigated samples during the first and second catalytic activity test.
Sample | 1st | 2nd | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T10 (°C) | T50 (°C) | T90 (°C) | STY a | Ea (kJ/mol) | T10 (°C) | T50 (°C) | T90 (°C) | STY a | Ea (kJ·mol-1) | ||
LFRO | 247 | 257 | 302 | 4.96 | 118 | 250 | 267 | 305 | 4.0 | 94 | |
LFRO_800R | 293 | 304 | 308 | 0.27 | 146 | 218 | 230 | 240 | 23.5 | 109 | |
LFRO_800R_200O | 285 | 297 | 300 | 0.35 | 125 | 220 | 234 | 249 | 20.6 | 106 | |
LFRO_800R_300O | 262 | 287 | 294 | 3.2 | 111 | 224 | 243 | 254 | 19.8 | 95 | |
LFRO_800R_400O | 219 | 235 | 248 | 22.3 | 97 | 219 | 235 | 250 | 23.0 | 98 |
Fig. 5. HRTEM micrographs of the “self-activation” process: LFRO_800R (a), LFRO_800R_200O (b), LFRO_800R_300O (c) and LFRO_800R_400O (d). The reduced sample (LFRO_800R) exhibits core-shell structured particles partially socketed into the parent matrix.
Fig. 6. HAADF-STEM image, EDS elemental mapping image and corresponding line scan results of LFRO_800R (a-d) and LFRO_800R_400O (e-h). The positions for the compositional analysis (orange frame) and line scan measurement (green frame with an arrow) are presented in (c) and (g).
Sample | La/at% | Fe/at% | Ru/at% |
---|---|---|---|
LFRO_800R | 11 | 14 | 75 |
LFRO_800R_400O | 3 | 17 | 80 |
Table 3 Elemental composition of the exsolved particles of LFRO_800R and LFRO_800R_400O.
Sample | La/at% | Fe/at% | Ru/at% |
---|---|---|---|
LFRO_800R | 11 | 14 | 75 |
LFRO_800R_400O | 3 | 17 | 80 |
Sample | Ru/La+Fe+Ru a (mol%) | ABET (m2·g-1) | d (particle size) b (nm) | Atomic ratio c (mol%) | Run (mol%) c | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ru | La | Fe | Ru3+ | Ruβ | Ru0 | |||||
LFRO_800R_200O | 5.1 | 10 | 11 ± 3 | 12 | 55 | 33 | 14 | 41 | 44 | |
LFRO_800R_300O | 4.9 | 9 | 10 ± 2 | 12 | 54 | 34 | 34 | 55 | 11 | |
LFRO_800R_400O | 5.0 | 10 | 12 ± 3 | 13 | 53 | 34 | 42 | 58 | 0 |
Table 4 Physicochemical properties of the re-oxidized LFRO_800R samples.
Sample | Ru/La+Fe+Ru a (mol%) | ABET (m2·g-1) | d (particle size) b (nm) | Atomic ratio c (mol%) | Run (mol%) c | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ru | La | Fe | Ru3+ | Ruβ | Ru0 | |||||
LFRO_800R_200O | 5.1 | 10 | 11 ± 3 | 12 | 55 | 33 | 14 | 41 | 44 | |
LFRO_800R_300O | 4.9 | 9 | 10 ± 2 | 12 | 54 | 34 | 34 | 55 | 11 | |
LFRO_800R_400O | 5.0 | 10 | 12 ± 3 | 13 | 53 | 34 | 42 | 58 | 0 |
Fig. 8. In-situ CO-adsorption infrared spectra of LFRO, LFRO_800R, LFRO_800R_200O, LFRO_800R_300O and LFRO_800R_400O. The spectral intensities are normalized according to the gaseous CO with its pronounced rotational vibrational bands. The assignment of the spectral features of adsorbed CO are pictorially shown on the right side.
Fig. 9. Structure-activity correlation (STY vs. HRTEM) during propane combustion reaction over studied samples. The schematic model of surface reconstruction of LFRO in reducing atmosphere and oxidizing atmosphere are indicated. LFRO is the as-prepared sample after calcination at 750 °C. LFRO_800R, is the LFRO sample with exsolved particles after reduction at 800 °C for 3 h, LFRO_800R_TO, denote the samples after an oxidative (under 10% O2/Ar) restoration of LFRO_800R at different temperatures T (200 to 400 °C). The activity data are given as STY for a reaction mixture of C3H8: O2: Ar = 1: 9: 90 and a flow rate of 100 mL·min-1, 20 mg of catalyst and a reaction temperature of 210 °C. Orange dots indicate the STY values at 210°C during the first light-off experiment up to 400 °C, while the red dots refer to STY values at 210 °C during the second light-off experiment.
Catalyst | The feed gas | WHSV (mL·h-1·kg-1 cat) | Reaction temperature (°C) | STY (molCO2·h-1·kg-1 cat) | Ref. |
---|---|---|---|---|---|
LFRO_800R_400O | 1 vol% C3H8, 10 vol% O2, 89 vol% N2 | 345000 | 210 | 22.3 | This Work |
Ru/LFO | 345000 | 210 | 5.5 | This Work | |
Ru/ZrO2 | 345000 | 210 | 20 | [ | |
Ru/CeO2 | 345000 | 210 | 23 | [ | |
Ru/Al2O3 | 345000 | 210 | 17 | [ | |
Ru/CeO2-1 | 0.8 vol% C3H8, 2 vol% O2, 97.8 vol% Ar | 150000 | 170 | 19 | [ |
Pd/CeO2-R | 0.2 vol% C3H8, 2 vol% O2, 97.8 vol% Ar | 300000 | 300 | 2.1 | [ |
Pd/CeO2-C | 300000 | 300 | 5.0 | [ | |
Pd/CeO2-O | 300000 | 300 | 43.6 | [ | |
Pt/ Nb2O5 | 150000 | 200 | 19.2 | [ | |
Pt/ZrO2 | 150000 | 200 | 5.2 | [ | |
Pt/ZnO2 | 150000 | 200 | 1.3 | [ | |
Pt/SnO2 | 150000 | 200 | 0.2 | [ | |
Pt//CeO2 | 120000 | 220 | 2.0 | [ | |
Pt//CeO2-0.5POx | 120000 | 220 | 5.1 | [ | |
Pt/TiO2 | 0.8 vol% C3H8, 9.9 vol% O2, 89.3 vol% N2 | 180000 | 250 | 39.9 | [ |
1Pt/BN | 0.2 vol% C3H8, 2 vol% O2, 97.8 vol% N2 | 80000 | 220 | 7.0 | [ |
2Pt-10V/SiO2 | 80000 | 200 | 30.1 | [ |
Table 5 Comparison of the catalytic activity of LFRO_800R_400O for propane oxidation with those reported catalysts.
Catalyst | The feed gas | WHSV (mL·h-1·kg-1 cat) | Reaction temperature (°C) | STY (molCO2·h-1·kg-1 cat) | Ref. |
---|---|---|---|---|---|
LFRO_800R_400O | 1 vol% C3H8, 10 vol% O2, 89 vol% N2 | 345000 | 210 | 22.3 | This Work |
Ru/LFO | 345000 | 210 | 5.5 | This Work | |
Ru/ZrO2 | 345000 | 210 | 20 | [ | |
Ru/CeO2 | 345000 | 210 | 23 | [ | |
Ru/Al2O3 | 345000 | 210 | 17 | [ | |
Ru/CeO2-1 | 0.8 vol% C3H8, 2 vol% O2, 97.8 vol% Ar | 150000 | 170 | 19 | [ |
Pd/CeO2-R | 0.2 vol% C3H8, 2 vol% O2, 97.8 vol% Ar | 300000 | 300 | 2.1 | [ |
Pd/CeO2-C | 300000 | 300 | 5.0 | [ | |
Pd/CeO2-O | 300000 | 300 | 43.6 | [ | |
Pt/ Nb2O5 | 150000 | 200 | 19.2 | [ | |
Pt/ZrO2 | 150000 | 200 | 5.2 | [ | |
Pt/ZnO2 | 150000 | 200 | 1.3 | [ | |
Pt/SnO2 | 150000 | 200 | 0.2 | [ | |
Pt//CeO2 | 120000 | 220 | 2.0 | [ | |
Pt//CeO2-0.5POx | 120000 | 220 | 5.1 | [ | |
Pt/TiO2 | 0.8 vol% C3H8, 9.9 vol% O2, 89.3 vol% N2 | 180000 | 250 | 39.9 | [ |
1Pt/BN | 0.2 vol% C3H8, 2 vol% O2, 97.8 vol% N2 | 80000 | 220 | 7.0 | [ |
2Pt-10V/SiO2 | 80000 | 200 | 30.1 | [ |
|
[1] | Liqing Wu, Qing Liang, Jiayi Zhao, Juan Zhu, Hongnan Jia, Wei Zhang, Ping Cai, Wei Luo. A Bi-doped RuO2 catalyst for efficient and durable acidic water oxidation [J]. Chinese Journal of Catalysis, 2023, 55(12): 182-190. |
[2] | GAO Kang, WEI Mingming, QU Zhenping, FU Qiang, BAO Xinhe. Dynamic structural changes of perovskite-supported metal catalysts during cyclic redox treatments and effect on catalytic CO oxidation [J]. Chinese Journal of Catalysis, 2013, 34(5): 889-897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||