Chinese Journal of Catalysis ›› 2023, Vol. 55: 227-240.DOI: 10.1016/S1872-2067(23)64549-8
• Articles • Previous Articles Next Articles
Zhijie Zhang(), Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu*(
)
Received:
2023-09-27
Accepted:
2023-10-19
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: Supported by:
Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion[J]. Chinese Journal of Catalysis, 2023, 55: 227-240.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64549-8
Fig. 1. (a) Graphic representation of the synthesis procedure of CBB@VO-In2O3 heterojunction. (b) Fermi level modulation of In2O3 for intensified IEF of CBB@VO-In2O3 heterojunction.
Fig. 3. Electrostatic potentials of In2O3 (a) and VO-In2O3 (c). DOS of In2O3 (b) and VO-In2O3 (d). The side view (e) and planar-averaged (f) electron density difference of the CBB@VO-In2O3 heterojunction.
Fig. 4. SCD (a), SPV (b), and IEF intensity (c) of CBB, CBB@In2O3, and CBB@VO-In2O3. (d) Amplifying IEF intensity between VO-In2O3 and CBB by introducing oxygen vacancies in In2O3.
Fig. 5. (a) XRD patterns of samples. TEM images of CBB PQDs (b) and the CBB@VO-In2O3 heterojunction (c-e). HRTEM image (f) and elemental mapping (g) of CBB@VO-In2O3.
Fig. 6. Photocatalytic production of CO with irradiation time (a) and CO production rate (b) over CBB, In2O3, VO-In2O3, CBB@In2O3, and CBB@VO-In2O3. (c) Production of CO under various conditions. (d) GC-MS analysis of 13CO from 13CO2 isotope experiment. (e) CO production rate over the CBB@VO-In2O3 heterojunctions with different weight ratios. (f) The recycle activity of CBB@VO-In2O3 for CO2 photoreduction. (g) Comparison of CO2 reduction performances of similar photocatalytic systems presented in recent papers.
Fig. 7. (a) Full-scan XPS of CBB, In2O3, VO-In2O3, and CBB@VO-In2O3 heterojunction. In situ XPS of Cs 3d (b), Bi 4f (c), Br 3d (d), In 3d (e), and O 1s (f) in CBB@VO-In2O3.
Fig. 8. Surface potential distribution variations of VO-In2O3 (a,b) and CBB@VO-In2O3 (c,d) in dark and light (ΔCPD = CPDlight - CPDdark). (e) S-scheme carrier separation mechanism of CBB@VO-In2O3 heterojunction under visible light illumination.
Fig. 9. The transient absorption spectra of CBB (a) and experimental decay kinetics (b) monitored under 550 nm. The transient absorption spectra of CBB@VO-In2O3 (c) and experimental decay kinetics (d) fitted under 520 nm.
Fig. 10. (a) In-situ DRIFTS spectra of CBB@VO-In2O3 collected every 10 min under visible light irradiation. (b) Optimized geometric structures of Gibbs free energy (ΔG) calculation of CO2 photoreduction over CBB@VO-In2O3. (c) Calculated ΔG for major steps in CO2 photoreduction over CBB and CBB@VO-In2O3. (d) Illustration of the mechanism for enhanced photocatalytic CO2 reduction performance over the CBB@VO-In2O3 heterojunction.
|
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[6] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[7] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[8] | Meiyu Zhang, Kongming Li, Chunlian Hu, Kangwei Ma, Wanjun Sun, Xianqiang Huang, Yong Ding. Co nanoparticles modified phase junction CdS for photoredox synthesis of hydrobenzoin and hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 47(4): 254-264. |
[9] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[10] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[11] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[12] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[13] | Zhongliao Wang, Bei Cheng, Liuyang Zhang, Jiaguo Yu, Youji Li, S. Wageh, Ahmed A. Al-Ghamdi. S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1657-1666. |
[14] | Qing Yao, Jiabo Le, Shize Yang, Jun Cheng, Qi Shao, Xiaoqing Huang. A trace of Pt can significantly boost RuO2 for acidic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1493-1501. |
[15] | Zhenlong Zhao, Ji Bian, Lina Zhao, Hongjun Wu, Shuai Xu, Lei Sun, Zhijun Li, Ziqing Zhang, Liqiang Jing. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1331-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||