Chinese Journal of Catalysis ›› 2023, Vol. 55: 137-158.DOI: 10.1016/S1872-2067(23)64551-6
• Reviews • Previous Articles Next Articles
Weikang Wanga,b, Shaobin Meia, Haopeng Jianga, Lele Wanga, Hua Tangc, Qinqin Liua,*()
Received:
2023-09-18
Accepted:
2023-10-22
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Qinqin Liu is a professor in School of Materials Science and Engineering of Jiangsu University. Her current research interests are to develop new photocatalytic materials for energy applications, such as CO2 reduction, water oxidation, O2 reduction and H2 evolution. She won the second prize of the Science and Technology Invention Award of the Ministry of Education. She served as a member of the Youth Council of China Photosensitive Society, a member of the Photocatalysis Professional Committee of China Photosensitive Society, a member of China Chemical Society and a review expert of many international journals.
Supported by:
Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts[J]. Chinese Journal of Catalysis, 2023, 55: 137-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64551-6
Fig. 4. TEM images of T-001/COF (a) and T-101/COF (b) heterostructures. (c) S-scheme mechanism of prepared samples. Reprinted with permission from Ref. [24]. Copyright 2022, Elsevier.
Fig. 5. TEM images of T-101/CsPbBr3 (a) and corresponding elemental mappings (b). Work function of CsPbBr3 (c), T-001 (d) and T-101 (e). (f) Energy transfer mechanism diagram. Reprinted with permission from Ref. [26]. Copyright 2023, Elsevier.
Fig. 6. (a) Synthesis process of Co2P/PC-b-TiO2 composite. HR-TEM image (b) and DF-STEM and elemental mappings (c) of Co2P/PC-b-TiO2. Oxygen type ratios (d), ESR spectra (e) and UV-vis diffuse reflectance spectra (f) of prepared photocatalysts. Reprinted with permission from Ref. [30]. Copyright 2022, Elsevier.
Fig. 7. (a?c) TEM, STEM, and HR-TEM images of TC2. In-situ (collected under UV-vis light irradiation) and ex-situ XPS spectra of Ti 2p (d), O 1s (e), and Br 3d (f) of TiO2, CsPbBr3, and TC2. Reprinted with permission from Ref. [32]. Copyright 2020, Springer Nature.
Fig. 8. TEM images of CN (a), TiO2 nanodots (b) and TOCN (c) composites. (d) HR-TEM image of TOCN. (e) Schematic diagram of S-scheme mechanism of TOCN. Reprinted with permission from Ref. [33]. Copyright 2022, Elsevier.
Fig. 9. FESEM images of TiO2 nanofibers (a), ZnIn2S4 nanosheets (b) and TZIS2 composite (c). TEM (d), HR-TEM (e) and EDX mapping images (f) of TZIS2. (g) The diagram of S-scheme mechanism. Reprinted with permission from Ref. [35]. Copyright 2022, Elsevier.
Fig. 10. (a) Schematic representation of 2D/2D Bi2O3/TiO2 S-scheme heterojunction. (b) TEM and HR-TEM images of TB-9. In-situ XPS spectra Ti 2p (c) and Bi 4f (g) of TB-9 sample tested in dark and light. Reprinted with permission from Ref. [36]. Copyright 2022, Elsevier.
Fig. 11. (a) Schematic of photocatalysts fabrication. Time-resolved transient photoluminescence (TRPL) spectra (b), PL spectra (c) and EIS Nyquit plots (d) of prepared samples. (e) Comparison of type-II and S-scheme heterojunction mechanism. Reprinted with permission from Ref. [39]. Copyright 2022, Elsevier.
Fig. 12. Schematic synthetic processes (a) and S-scheme charge transfer pathway (b) of TiO2@BTTA heterojunction. (c) N2 adsorption-desorption isotherms and pore size distributions (inset). UV-vis DRS spectra (d) and photocatalytic yields (e) of obtained samples. Reprinted with permission from Ref. [42]. Copyright 2023, Elsevier.
Fig. 13. (a) TEM and HR-TEM images of TiO2/BaTiO3 sample. XPS spectra of Ti 2p (b) and O 1s (c) of prepared samples. (d) Electron local function of TiO2/BaTiO3. Reprinted with permission from Ref. [46]. Copyright 2023, Elsevier.
Fig. 14. (a) TEM image of SCNT6. (b) Photocatalytic activities of SCNT6 photocatalyst tested with different scavengers. ESR spectra of SCNT6: DMPO-?O2- (c) and ?OH (d). In-situ high resolution XPS Ti 2p (e) and N 1s (f) spectra of TiO2, SCN and SCNT6 samples. Reprinted with permission from Ref. [49]. Copyright 2021, Elsevier.
Fig. 15. (a) Diagram of TiO2/Znln2S4 heterojunction. Photocatalytic Cr(VI) removal activities (b) and pH value effects (c) by prepared samples. (d) Schematic illustration of IEF driven charge transfer. SPV spectroscopy of photocatalysts (e) and IEF intensity (f) of as-synthesized samples. Reprinted with permission from Ref. [51]. Copyright 2023, Elsevier.
Fig. 16. (a) TEM image and diagram (inset) of TiO2@Znln2S4 heterojunction. In-situ high-resolution XPS spectra of Ti 2p of TiO2 and TiO2@ZnIn2S4 (b), and In 3d of ZnIn2S4 and TiO2@ZnIn2S4 (c). (d) S-scheme transfer mechanism. EPR spectra of DMPO-?OH (e) and DMPO-?O2- (f) over prepared samples. Reprinted with permission from Ref. [58]. Copyright 2021, Wiley-VCH.
Fig. 17. (a) The stacking mode of PT and CdS/PT composite. (b) Photocatalytic H2 production performance. (c) AFM image of CdS/PT composite. Surface potential distributions of CdS/PT observed in darkness (d) and under light irradiation (e). (f) The line-scanning CPD from point A to B. (g) Testing theory of photo-irradiated KPFM. Reprinted with permission from Ref. [60]. Copyright 2021, Wiley-VCH.
Fig. 18. (a) FE-SEM image of TiO2/PDA sample. fs-TAS (b) and decay curves (c) of GSB signals in TiO2 and TP0.5. (d) S-scheme charge transfer pathway and time scales for photogenerated charge dynamics. Reprinted with permission from Ref. [64]. Copyright 2022, American Chemical Society.
Fig. 19. TEM (a) and HRTEM (b) images of O-ZnIn2S4/TiO2?x heterojunction. In-situ XPS spectra of high-resolution Ti 2p (c) and In 3d (d) for O-ZIS/TiO2?x. Photocatalytic H2 and BAD production rate over prepared samples with different defects or doping (e) and nanocomposites with different O-ZIS contents (f). Reprinted with permission from Ref. [67]. Copyright 2022, Elsevier.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Co9S8/TiO2 | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 3982 μmol g-1 h-1 | [ |
2023 | ZnS/TiO2 | 300 W Xe lamp | Na2S(0.35 mol L-1)/Na2SO3(0.25 mol L-1) | 5503.8 μmol g-1 h-1 | [ |
2022 | Co2P/PC-b-TiO2 | 300 W Xe lamp with a standard AM 1.5G filter | 10 vol% TEOA | 1.53 mmol g-1 h-1 | [ |
2022 | TiO2/ZnIn2S4 (TZISx) | 300 W Xe lamp | 10 vol% TEOA | 6.03 mmol g-1 h-1 | [ |
2022 | P-CuWO4/TiO2 (PCWO/T) | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 6169.25 μmol g-1 h-1 | [ |
2022 | TiO2/FePS3 | 350 W Xe lamp (λ > 350 nm) | 10 vol% ethanol | 99.5 μmol g-1 h-1 | [ |
2022 | BP/(Ti3C2Tx@TiO2) | Xe lamp (λ > 325 nm) | Pure water | 564.8 μmol g-1 h-1, AQE of 2.7% at 380 nm | [ |
2022 | Ti3C2 MXene@TiO2/ CuInS2 (M@T/CIS) | 300 W Xe lamp (320‒1100 nm) | 20% methanol | 356.27 μmol g-1 h-1 | [ |
2022 | TiO2‒x/TpPa-1-COF | Xe lamp (300 W, λ ≥ 420 nm) | PBS buffer solution (0.1 mol L-1, 50 mL) with sodium ascorbate (SA, 100 mg) as sacrificial and 3 wt% Pt as cocatalyst | 15.33 mmol g-1 h-1 with a TOF of 235.74 h-1 | [ |
2022 | TiO2‒x/BiOI | Xe lamp using AM 1.5G (λ = 300‒800 nm) | 15 vol% methanol | 794.28 μmol g-1 h-1 | [ |
2022 | O-ZnIn2S4/TiO2‒x | 300 W Xe lamp with a 420 nm cut-off filter | Na2S (0.35 mol L-1)/ Na2SO3 (0.25 mol L-1) | 2584.9 μmol g-1 h-1 with benzaldehyde production rate of 2880.5 μmol g-1 h-1 | [ |
2022 | Co3Se4/TiO2 | 300 W Xe lamp | 20 vol% TEOA | 6065 μmol g-1 h-1 | [ |
2022 | TiO2 nanodots/ g-C3N4 | Simulated sunlight (λ > 300 nm) | H2 and O2 evolution rate of 1318.3 and 638.7 μmol g-1/3 h | ||
2022 | PDI/TiO2 | 300 W Xe lamp | 10 vol% TEOA with 5 mg H2PtCl·6H2O as co-catalyst for 50 mg of photocatalyst | H2 and O2 release rates of 238.20 and 114.18 μmol g-1 h-1 | [ |
2022 | ZCS/TiO2 | 300 W Xe lamp with 420 nm cut-off filter | 10% TEOA | 5580 μmol g-1 h-1 with AQY of 11.5% at 420 nm | [ |
2021 | CoS@TiO2 | 150 W Xe lamp | 10 vol% of lactic acid | 1945 μmol g-1 for 10 h | [ |
2021 | g-C3N4/TiO2 | 300 W Xe lamp (420 nm cut-off filter) | 10 vol% TEOA and 3 wt% Pt | 5252.9 μmol g-1 h-1 | [ |
2020 | WO3/TiO2/rGO | 350 W Xe lamp | 20 vol% aqueous methanol solution. | 245.8 μmol g-1 h-1 | [ |
Table 1 Recently reported TiO2-based S-scheme heterojunctions for hydrogen evolution reaction.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Co9S8/TiO2 | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 3982 μmol g-1 h-1 | [ |
2023 | ZnS/TiO2 | 300 W Xe lamp | Na2S(0.35 mol L-1)/Na2SO3(0.25 mol L-1) | 5503.8 μmol g-1 h-1 | [ |
2022 | Co2P/PC-b-TiO2 | 300 W Xe lamp with a standard AM 1.5G filter | 10 vol% TEOA | 1.53 mmol g-1 h-1 | [ |
2022 | TiO2/ZnIn2S4 (TZISx) | 300 W Xe lamp | 10 vol% TEOA | 6.03 mmol g-1 h-1 | [ |
2022 | P-CuWO4/TiO2 (PCWO/T) | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 6169.25 μmol g-1 h-1 | [ |
2022 | TiO2/FePS3 | 350 W Xe lamp (λ > 350 nm) | 10 vol% ethanol | 99.5 μmol g-1 h-1 | [ |
2022 | BP/(Ti3C2Tx@TiO2) | Xe lamp (λ > 325 nm) | Pure water | 564.8 μmol g-1 h-1, AQE of 2.7% at 380 nm | [ |
2022 | Ti3C2 MXene@TiO2/ CuInS2 (M@T/CIS) | 300 W Xe lamp (320‒1100 nm) | 20% methanol | 356.27 μmol g-1 h-1 | [ |
2022 | TiO2‒x/TpPa-1-COF | Xe lamp (300 W, λ ≥ 420 nm) | PBS buffer solution (0.1 mol L-1, 50 mL) with sodium ascorbate (SA, 100 mg) as sacrificial and 3 wt% Pt as cocatalyst | 15.33 mmol g-1 h-1 with a TOF of 235.74 h-1 | [ |
2022 | TiO2‒x/BiOI | Xe lamp using AM 1.5G (λ = 300‒800 nm) | 15 vol% methanol | 794.28 μmol g-1 h-1 | [ |
2022 | O-ZnIn2S4/TiO2‒x | 300 W Xe lamp with a 420 nm cut-off filter | Na2S (0.35 mol L-1)/ Na2SO3 (0.25 mol L-1) | 2584.9 μmol g-1 h-1 with benzaldehyde production rate of 2880.5 μmol g-1 h-1 | [ |
2022 | Co3Se4/TiO2 | 300 W Xe lamp | 20 vol% TEOA | 6065 μmol g-1 h-1 | [ |
2022 | TiO2 nanodots/ g-C3N4 | Simulated sunlight (λ > 300 nm) | H2 and O2 evolution rate of 1318.3 and 638.7 μmol g-1/3 h | ||
2022 | PDI/TiO2 | 300 W Xe lamp | 10 vol% TEOA with 5 mg H2PtCl·6H2O as co-catalyst for 50 mg of photocatalyst | H2 and O2 release rates of 238.20 and 114.18 μmol g-1 h-1 | [ |
2022 | ZCS/TiO2 | 300 W Xe lamp with 420 nm cut-off filter | 10% TEOA | 5580 μmol g-1 h-1 with AQY of 11.5% at 420 nm | [ |
2021 | CoS@TiO2 | 150 W Xe lamp | 10 vol% of lactic acid | 1945 μmol g-1 for 10 h | [ |
2021 | g-C3N4/TiO2 | 300 W Xe lamp (420 nm cut-off filter) | 10 vol% TEOA and 3 wt% Pt | 5252.9 μmol g-1 h-1 | [ |
2020 | WO3/TiO2/rGO | 350 W Xe lamp | 20 vol% aqueous methanol solution. | 245.8 μmol g-1 h-1 | [ |
Fig. 20. (a) Diagram of WO3/TiO2 heterojunction. In-situ XPS high-resolution spectra of Ti 2p (b) and W 4f (c), surface charge densities (d), SS-SPV spectra (e), IEF intensities (f), TS-SPV spectra (g) and charge extraction efficiencies (h) of TH and TH/WP-5 samples. (i) CO production over prepared photocatalysts. Reprinted with permission from Ref. [52]. Copyright 2022, American Chemical Society.
Fig. 21. (a) Optical photograph of the floatable photocatalyst. (b) Schematic diagram of photoredox reactions in a tri-phase system. (c) Photocatalytic activity of H2O2 and FA formation over TO, BO, and TBO40 in 12 h. High-resolution in-situ XPS spectra of Ti 2p (d) and Bi 4f (e) in TO, TBO40, and TBO40. (f) Transient absorption kinetics of TO-AgNO3 and TBO40 at 395 nm. Reprinted with permission from Ref. [47]. Copyright 2022, Wiley-VCH.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Cu2‒xS/TiO2 | 300 W Xe lamp | H2O | CH4:11.4 μmol g-1 h-1 | [ |
2023 | CuPc/N-TiO2 | 300 W Xe lamp (420 nm cut-off filter) | H2O | CO: 5.4 μmol g-1 h-1, retained in four consecutive runs (4 h per run) | [ |
2023 | g-C3N4/TiO2/ R@Ti3C2/CoAlLa-LDH | 35W Xe lamp | H2O | CO: 185.85 µmole/g H2: 153.07 µmole/g; kept in three consecutive runs (4 h per run) | [ |
2023 | In2O3@TiO2 | 300 W Xe lamp (λ ≥ 420 nm) | H2O | CH4: 11.1 μmol g-1 h-1 and selectivity of 88.1%; remained basically stable during five cycles (4 h per cycle) | [ |
2023 | Co3O4/Ti3+-TiO2 | 350 W Xe lamp | H2O | CH4 and CO yield of 80.57 and 9.85 μmol g-1 h-1; only ~4.4% decrease in 24 h continuous recycles | [ |
2023 | TiO2@CoNi-MOF | 300 W Xe lamp with an AM 1.5G filter | H2O | CH4: 41.65 μmol g-1 h-1 | [ |
2023 | TiO2/CsPbBr3 | 300 W Xe lamp | H2O | CO: 12.5 μmol g-1 h-1 with selectivity of 90.2%; no evident decrease under the 20 h irradiation (5 h per cycle). | [ |
2023 | Co3O4-TiO2/C | 300 W Xe lamp with a 420 nm cutoff filter | [Ru(bpy)3]Cl2·6H2O (8 mg), a mixed solvent of C2H3N (3 mL), water (2 mL), and C6H15NO3 (1 mL) | CO: 33.21 mmol g-1 h-1; just a slight fluctuation in five cycles. | [ |
2022 | N-TiO2/g-C3N4 | 300W Xe lamp with an AM 1.5 optical solar simulator filter | H2O | 33.35 μmol g-1 h-1 for CO; stable after three cyclic operations without any noticeable loss of activity | [ |
2022 | CsPbBr3/TiO2 | 300W Xe lamp with an AM 1.5G filter | H2O | 145.28 μmol g-1 h-1 for CO; no obvious activity decay after the cycling test (4 consecutive cycles) | [ |
2022 | TiO2/COF | 300 W Xe lamp | 20 vol% TEOA | 11.6 μmol g-1 h-1 for CO | [ |
2022 | Fe@TiO2/BCN | 300W Xe lamp with visible light filter | H2O | CH4 and CO release rates of 24.7 and 2.4 μmol g-1 h-1 | [94] |
2022 | WO3/TiO2 | 300 W Xe lamp | H2O | CO: 4.73 μmol g-1 h-1; continuously produce CO within 16 h | [ |
2022 | Ag/AgVO3/TiO2 | UV light (8 W) | H2O | Rmethanol: 9561.3 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2/Ti3AlC2 | 35 W HID | H2O | CO and CH4 production of 297.26 and 2103.50 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2 | 300 W Xe lamp | H2O | CO and CH4 yield of 571.65 and 213.69 μmol g-1 m-2; no decay after consecutive running for four cycles | [ |
2022 | TiO2@Bi2MoO6 | 300 W Xe lamp | H2O | CO yield (183.97 mmol g-1 within 6 h); negligible changes in photocatalytic activity after four cycles (6 h per run) | [ |
2022 | TiO2@In2Se3@Ag3PO4 | 300 W Xe lamp | H2O | CH4, CH3OH and CO yields of 3.98, 4.32 and 8.2 μmol g-1 h-1; reduced rarely after three cycles (6 h per run) | [ |
2021 | Re-IO-TiO2‒x/SnO2 | 300 W Xe lamp (λ ≥ 380 nm) | H2O | CO: 16.59 μmol g-1 h-1; high cycling stability in five circulation | [ |
2021 | TiO2@ZnIn2S4 | 300 W Xe lamp | H2O vapor | total CO2 photoreduction conversion rates of 18.32 μmol g-1 h-1; no noticeable change in three cycles (3 h per cycle) | [ |
2021 | TiO2/MoS2/ g-C3N4 | 300 W Xe lamp | H2O | CO and CH4 release rates of 9.2 and 4.2 μmol g-1 h-1; reasonably stable in three cycles (5 h per cycle) | [ |
2021 | TiO2@PDA | 300W Xe lamp | H2O | CH3OH and CH4 yield of 0.11 and 1.5 μmol g-1 h-1 | [ |
2020 | TiO2/CsPbBr3 | 300 W Xe lamp | 30 mL of acetonitrile with 100 μL of water | CO: 9.02 μmol g-1 h-1; hardly perceptible decay of photocatalytic activity in four times cycles | [ |
Table 2 Recently reported TiO2-based S-scheme heterojunctions for CO2 photoreduction.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Cu2‒xS/TiO2 | 300 W Xe lamp | H2O | CH4:11.4 μmol g-1 h-1 | [ |
2023 | CuPc/N-TiO2 | 300 W Xe lamp (420 nm cut-off filter) | H2O | CO: 5.4 μmol g-1 h-1, retained in four consecutive runs (4 h per run) | [ |
2023 | g-C3N4/TiO2/ R@Ti3C2/CoAlLa-LDH | 35W Xe lamp | H2O | CO: 185.85 µmole/g H2: 153.07 µmole/g; kept in three consecutive runs (4 h per run) | [ |
2023 | In2O3@TiO2 | 300 W Xe lamp (λ ≥ 420 nm) | H2O | CH4: 11.1 μmol g-1 h-1 and selectivity of 88.1%; remained basically stable during five cycles (4 h per cycle) | [ |
2023 | Co3O4/Ti3+-TiO2 | 350 W Xe lamp | H2O | CH4 and CO yield of 80.57 and 9.85 μmol g-1 h-1; only ~4.4% decrease in 24 h continuous recycles | [ |
2023 | TiO2@CoNi-MOF | 300 W Xe lamp with an AM 1.5G filter | H2O | CH4: 41.65 μmol g-1 h-1 | [ |
2023 | TiO2/CsPbBr3 | 300 W Xe lamp | H2O | CO: 12.5 μmol g-1 h-1 with selectivity of 90.2%; no evident decrease under the 20 h irradiation (5 h per cycle). | [ |
2023 | Co3O4-TiO2/C | 300 W Xe lamp with a 420 nm cutoff filter | [Ru(bpy)3]Cl2·6H2O (8 mg), a mixed solvent of C2H3N (3 mL), water (2 mL), and C6H15NO3 (1 mL) | CO: 33.21 mmol g-1 h-1; just a slight fluctuation in five cycles. | [ |
2022 | N-TiO2/g-C3N4 | 300W Xe lamp with an AM 1.5 optical solar simulator filter | H2O | 33.35 μmol g-1 h-1 for CO; stable after three cyclic operations without any noticeable loss of activity | [ |
2022 | CsPbBr3/TiO2 | 300W Xe lamp with an AM 1.5G filter | H2O | 145.28 μmol g-1 h-1 for CO; no obvious activity decay after the cycling test (4 consecutive cycles) | [ |
2022 | TiO2/COF | 300 W Xe lamp | 20 vol% TEOA | 11.6 μmol g-1 h-1 for CO | [ |
2022 | Fe@TiO2/BCN | 300W Xe lamp with visible light filter | H2O | CH4 and CO release rates of 24.7 and 2.4 μmol g-1 h-1 | [94] |
2022 | WO3/TiO2 | 300 W Xe lamp | H2O | CO: 4.73 μmol g-1 h-1; continuously produce CO within 16 h | [ |
2022 | Ag/AgVO3/TiO2 | UV light (8 W) | H2O | Rmethanol: 9561.3 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2/Ti3AlC2 | 35 W HID | H2O | CO and CH4 production of 297.26 and 2103.50 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2 | 300 W Xe lamp | H2O | CO and CH4 yield of 571.65 and 213.69 μmol g-1 m-2; no decay after consecutive running for four cycles | [ |
2022 | TiO2@Bi2MoO6 | 300 W Xe lamp | H2O | CO yield (183.97 mmol g-1 within 6 h); negligible changes in photocatalytic activity after four cycles (6 h per run) | [ |
2022 | TiO2@In2Se3@Ag3PO4 | 300 W Xe lamp | H2O | CH4, CH3OH and CO yields of 3.98, 4.32 and 8.2 μmol g-1 h-1; reduced rarely after three cycles (6 h per run) | [ |
2021 | Re-IO-TiO2‒x/SnO2 | 300 W Xe lamp (λ ≥ 380 nm) | H2O | CO: 16.59 μmol g-1 h-1; high cycling stability in five circulation | [ |
2021 | TiO2@ZnIn2S4 | 300 W Xe lamp | H2O vapor | total CO2 photoreduction conversion rates of 18.32 μmol g-1 h-1; no noticeable change in three cycles (3 h per cycle) | [ |
2021 | TiO2/MoS2/ g-C3N4 | 300 W Xe lamp | H2O | CO and CH4 release rates of 9.2 and 4.2 μmol g-1 h-1; reasonably stable in three cycles (5 h per cycle) | [ |
2021 | TiO2@PDA | 300W Xe lamp | H2O | CH3OH and CH4 yield of 0.11 and 1.5 μmol g-1 h-1 | [ |
2020 | TiO2/CsPbBr3 | 300 W Xe lamp | 30 mL of acetonitrile with 100 μL of water | CO: 9.02 μmol g-1 h-1; hardly perceptible decay of photocatalytic activity in four times cycles | [ |
Time | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | RF@TiO2 | simulated sunlight (AM 1.5G) using a 300 W Xe lamp | pure water | 66.6 mmol L-1 g-1 h-1 and solar-to-chemical conversion efficiency of 1.11% | [ |
2023 | TiO2/BTTA | 300 W Xenon arc lamp | furfuryl alcohol solution (2 mmol L-1) | 740 μmol L-1 h-1 with a furoic alcohol conversion of 96% | [ |
2023 | 3DOM SCN/T | 300 W Xe lamp | Pure water | 2128 μmol h-1 g-1 | [ |
2022 | TiO2/Bi2O3 | 300 W Xenon arc lamp | furfuryl alcohol aqueous solution (25 μL/50 mL) | 1.15 mmol L-1 h-1 with furfuryl alcohol production rate at 0.45 mmol L-1 h-1 | [ |
2022 | 2H-MoSe2/ TiO2 NRAs | A 5 W UV-LED (λ = 254 nm, 1.5 cm2) | all PEC measurements tested in a 0.2 mol L-1 Na2SO4 aqueous solution | 40 μmol L-1 h-1 | [ |
2022 | TiO2/PDA | 300 W Xenon arc lamp | 10 vol% ethanol | 2.05 μmol g-1 h-1 | [ |
2023 | TiO2/In2S3 | 300 W Xenon arc lamp | 10 vol% ethanol | 376 μmol L-1 h-1 | [ |
Table 3 Recently reported TiO2-based S-scheme heterojunction photocatalysts for H2O2 production.
Time | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | RF@TiO2 | simulated sunlight (AM 1.5G) using a 300 W Xe lamp | pure water | 66.6 mmol L-1 g-1 h-1 and solar-to-chemical conversion efficiency of 1.11% | [ |
2023 | TiO2/BTTA | 300 W Xenon arc lamp | furfuryl alcohol solution (2 mmol L-1) | 740 μmol L-1 h-1 with a furoic alcohol conversion of 96% | [ |
2023 | 3DOM SCN/T | 300 W Xe lamp | Pure water | 2128 μmol h-1 g-1 | [ |
2022 | TiO2/Bi2O3 | 300 W Xenon arc lamp | furfuryl alcohol aqueous solution (25 μL/50 mL) | 1.15 mmol L-1 h-1 with furfuryl alcohol production rate at 0.45 mmol L-1 h-1 | [ |
2022 | 2H-MoSe2/ TiO2 NRAs | A 5 W UV-LED (λ = 254 nm, 1.5 cm2) | all PEC measurements tested in a 0.2 mol L-1 Na2SO4 aqueous solution | 40 μmol L-1 h-1 | [ |
2022 | TiO2/PDA | 300 W Xenon arc lamp | 10 vol% ethanol | 2.05 μmol g-1 h-1 | [ |
2023 | TiO2/In2S3 | 300 W Xenon arc lamp | 10 vol% ethanol | 376 μmol L-1 h-1 | [ |
Fig. 22. (a) Schematic diagram of GNT-IS-100/80/2.5-Ar500 heterostructure. Photocatalytic antibacterial (E. coil) rates (b) and degradation performance (c) of prepared photocatalysts. UV-vis DRS spectra (d) and EIS spectra (e) of prepared samples. (f) 3D charge difference density and planar averaged charge density difference of GO/g-C3N4/TiO2 heterojunction. Reprinted with permission from Ref. [121]. Copyright 2023, Elsevier.
Year | Photocatalyst | Application | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | BaTiO3/TiO2 | piezophotocatalytic norfloxacin degradation | 300 W Xe lamp with a 1.5 G filter (100 mW cm-2) and periodic vibration provided by an ultrasonic cleaner (100 W, 40 kHz) | 91.7% complete with a rate constant of 43 × 10-3 min-1 | [ |
2023 | C-TiO2/PCN | ciprofloxacin degradation | ultrasonic cleaner (40 kHz, 200 W), 300 W Xe lamp with a 420 nm filter, 10 ppm CIP solution | 0.0517 min-1 | [ |
2023 | Bi2Sn2O7/TiO2 | photoelectrocatalytic sulfamethazine degradation | electrolyte: Na2SO4 solution (0.1 mol L-1) and 50 W LED lamp (0.13 W cm-2, XC-50W1A5-OSP, China) | removal efficiency of 90.3%; pseudo-first-order rate constant of k = 0.0189 min-1 | [ |
2023 | rGO/CeO2/TiO2 | photothermal catalytic Hg0 oxidation | space velocity in the photothermal catalytic reactor of 6800 h-1; a near-UV lamp (λ = 365 nm, UVB) | oxidation efficiency of 96% | [ |
2023 | NH2-MIL-53(Al)/ F-TiO2(B) | tetracycline degradation | 15 mg L-1 of TC; 300 W Xenon lamp (λ > 420 nm) | degradation efficiency of 96%; first-order degradation constant of 0.024 min-1 | [ |
2023 | B-TiO2/BiVO4 | tetracycline hydrochloride (TCH) degradation and H2 evolution | 20 mg L-1 TCH solution; 300 W xenon lamp (λ > 400 nm); 300 W Xe lamp, triethanolamine acting as a sacrificial reagent | TCH degradation efficiency of 89.30 % in 120 min. H2 evolution rate of 561.99 μmol g-1 h-1 | [ |
2023 | Ce-TiO2/ZnIn2S4 | photocatalytic Cr(VI) removal | XPA-7 photocatalytic reactor (Xujiang electromechanical plant); Cr(VI) solution (50 mg L-1) containing 5 mmol L-1 citric acid | [ | |
2023 | g-C3N4/TiO2/ZnIn2S4 graphene aerogel | Cr(VI) reduction, methyl orange (MO) degradation and hydrogen evolution | Cr (VI) (50 mg L-1) and MO (30 mg L-1) in aqueous solution; 300 W Xe lamp | Cr(VI) reduction rate of 98.3% in 70 min, MO degradation efficiency of 97.5% in 30 min and hydrogen evolution rate of 6531.9 μmol g-1 | [ |
2022 | In2S3/TiO2(B) | photocatalytic tetracycline degradation | 10 mg L-1 of TC aqueous solution; 300 W Xenon lamp. | removal efficiency of 97.3% | [ |
2022 | Bi/CdS/TiO2 | photocatalytic rhodamine B (RhB), methylene blue (MB) degradation and Cr(VI) reduction | 500 W Xe lamp (λ > 420 nm) | removal efficiency of 100% toward MB degradation in 2 h, 85.41% and 97.04% for RhB and Cr(VI) in 3 h | [ |
2022 | SnO2/TiO2 | Rhodamine B (RhB), methyl orange (MO) and tetracycline hydrochloride (TCH) reduction. | 300 Xe lamp (200-1000 nm); RhB solution (10 mg L-1), MO (20 mg L-1) and TCH (10 mg L-1) | removal rate of RhB, MO and TCH of 93%, 91% and 85% | [ |
2022 | g-C3N4/C-TiO2 | photocatalytic ciprofloxacin hydrochloride (CIP⋅HCl) degradation | 20 mg L-1 CIP⋅HCl solution and 300 W Xe lamp (λ > 420 nm) | degradation efficiency of 88.14% in 50 min | [ |
2022 | Ag3PO4/TiO2 | photodegradation of rhodamine B, phenol and tetracycline hydrochloride, and oxygen evolution | 300W Xe lamp | O2 production (726 µmol/g/h); 0.789 min-1 (RhB), 0.062 min-1 (phenol), and 0.193 min-1 (TC) | [ |
2022 | Bi2O3-TiO2 | photocatalytic degrade rhodamine B (RhB) and tetracycline hydrochloride (TCH), | RhB (10 mg L-1) and TCH (50 mg L-1); xenon lamp (300 W) | removal efficiency of 100% (RhB) and 92% (TCH) | [ |
2021 | SCN/TiO2 | photocatalytic Congo Red (CR) degradation | 300 W xenon lamp; CR (100 mL, 50 mg/L) | Apparent degradation rate constant of 96.2 × 10-3 min-1 | [ |
2020 | Bi2O3/TiO2 | photocatalytic phenol oxidation | phenol aqueous solution (100 mg L-1); Xe lamp | removal efficiency of 47.3% | [ |
2023 | GO/g-C3N4/TiO2 | photocatalytic antibiosis and dye methylene blue (MB) degradation | 350 W Xeon-lamp (λ ≥ 420 nm) and MB (10 mg L-1) | antibacterial rate for Escherichia coli (E. coli) of 98.18%, and MB degradation rate of 98.84% | [ |
2023 | WO3@TiO2/CS-biochar | organic dye methylene blue (MB) degradation and antibiotic tetracycline (TC) | 500 W Xe lamp (λ ≥ 400 nm); MB (15 mg L-1) and TC (10 mg L-1) | both MB and TC removal efficiency reached 95% in 2 h | [ |
2023 | B-TiO2‒x/Bi4O5I2/CDs | photocatalytic degradation of cephalexin (CEX), metronidazole (MNZ), and tetracycline (TC) | 50 W LED lamp (450-650 nm) | photodegradation rate of 718 × 10-4 min-1 for TC | [ |
2022 | TiO2/Bi2O3 | photocatalytic sterilization and water splitting | 300 W Xenon lamp (42.86 mW cm-2); E. coli with OD600 value of 1. 10 vol% TEOA and LED lamp (365 nm) for H2 generation | complete inactivation of 4.63 107 CFU mL-1 Escherichia coli cells within 6 h. H2 generation rate of 12.08 mmol h-1 g-1 | [ |
2022 | TiO2/ chlorophyll | photocatalytic sterilization | bacterial LB solution (20 μL, 1.47 × 109 cfu mL-1) | 2.94 × 107 cfu E. coli were killed by 1 cm-2 coated mask filters in 3 h | [ |
Table 4 Recently reported TiO2-based S-scheme heterojunction photocatalysts for H2O2 treatment.
Year | Photocatalyst | Application | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | BaTiO3/TiO2 | piezophotocatalytic norfloxacin degradation | 300 W Xe lamp with a 1.5 G filter (100 mW cm-2) and periodic vibration provided by an ultrasonic cleaner (100 W, 40 kHz) | 91.7% complete with a rate constant of 43 × 10-3 min-1 | [ |
2023 | C-TiO2/PCN | ciprofloxacin degradation | ultrasonic cleaner (40 kHz, 200 W), 300 W Xe lamp with a 420 nm filter, 10 ppm CIP solution | 0.0517 min-1 | [ |
2023 | Bi2Sn2O7/TiO2 | photoelectrocatalytic sulfamethazine degradation | electrolyte: Na2SO4 solution (0.1 mol L-1) and 50 W LED lamp (0.13 W cm-2, XC-50W1A5-OSP, China) | removal efficiency of 90.3%; pseudo-first-order rate constant of k = 0.0189 min-1 | [ |
2023 | rGO/CeO2/TiO2 | photothermal catalytic Hg0 oxidation | space velocity in the photothermal catalytic reactor of 6800 h-1; a near-UV lamp (λ = 365 nm, UVB) | oxidation efficiency of 96% | [ |
2023 | NH2-MIL-53(Al)/ F-TiO2(B) | tetracycline degradation | 15 mg L-1 of TC; 300 W Xenon lamp (λ > 420 nm) | degradation efficiency of 96%; first-order degradation constant of 0.024 min-1 | [ |
2023 | B-TiO2/BiVO4 | tetracycline hydrochloride (TCH) degradation and H2 evolution | 20 mg L-1 TCH solution; 300 W xenon lamp (λ > 400 nm); 300 W Xe lamp, triethanolamine acting as a sacrificial reagent | TCH degradation efficiency of 89.30 % in 120 min. H2 evolution rate of 561.99 μmol g-1 h-1 | [ |
2023 | Ce-TiO2/ZnIn2S4 | photocatalytic Cr(VI) removal | XPA-7 photocatalytic reactor (Xujiang electromechanical plant); Cr(VI) solution (50 mg L-1) containing 5 mmol L-1 citric acid | [ | |
2023 | g-C3N4/TiO2/ZnIn2S4 graphene aerogel | Cr(VI) reduction, methyl orange (MO) degradation and hydrogen evolution | Cr (VI) (50 mg L-1) and MO (30 mg L-1) in aqueous solution; 300 W Xe lamp | Cr(VI) reduction rate of 98.3% in 70 min, MO degradation efficiency of 97.5% in 30 min and hydrogen evolution rate of 6531.9 μmol g-1 | [ |
2022 | In2S3/TiO2(B) | photocatalytic tetracycline degradation | 10 mg L-1 of TC aqueous solution; 300 W Xenon lamp. | removal efficiency of 97.3% | [ |
2022 | Bi/CdS/TiO2 | photocatalytic rhodamine B (RhB), methylene blue (MB) degradation and Cr(VI) reduction | 500 W Xe lamp (λ > 420 nm) | removal efficiency of 100% toward MB degradation in 2 h, 85.41% and 97.04% for RhB and Cr(VI) in 3 h | [ |
2022 | SnO2/TiO2 | Rhodamine B (RhB), methyl orange (MO) and tetracycline hydrochloride (TCH) reduction. | 300 Xe lamp (200-1000 nm); RhB solution (10 mg L-1), MO (20 mg L-1) and TCH (10 mg L-1) | removal rate of RhB, MO and TCH of 93%, 91% and 85% | [ |
2022 | g-C3N4/C-TiO2 | photocatalytic ciprofloxacin hydrochloride (CIP⋅HCl) degradation | 20 mg L-1 CIP⋅HCl solution and 300 W Xe lamp (λ > 420 nm) | degradation efficiency of 88.14% in 50 min | [ |
2022 | Ag3PO4/TiO2 | photodegradation of rhodamine B, phenol and tetracycline hydrochloride, and oxygen evolution | 300W Xe lamp | O2 production (726 µmol/g/h); 0.789 min-1 (RhB), 0.062 min-1 (phenol), and 0.193 min-1 (TC) | [ |
2022 | Bi2O3-TiO2 | photocatalytic degrade rhodamine B (RhB) and tetracycline hydrochloride (TCH), | RhB (10 mg L-1) and TCH (50 mg L-1); xenon lamp (300 W) | removal efficiency of 100% (RhB) and 92% (TCH) | [ |
2021 | SCN/TiO2 | photocatalytic Congo Red (CR) degradation | 300 W xenon lamp; CR (100 mL, 50 mg/L) | Apparent degradation rate constant of 96.2 × 10-3 min-1 | [ |
2020 | Bi2O3/TiO2 | photocatalytic phenol oxidation | phenol aqueous solution (100 mg L-1); Xe lamp | removal efficiency of 47.3% | [ |
2023 | GO/g-C3N4/TiO2 | photocatalytic antibiosis and dye methylene blue (MB) degradation | 350 W Xeon-lamp (λ ≥ 420 nm) and MB (10 mg L-1) | antibacterial rate for Escherichia coli (E. coli) of 98.18%, and MB degradation rate of 98.84% | [ |
2023 | WO3@TiO2/CS-biochar | organic dye methylene blue (MB) degradation and antibiotic tetracycline (TC) | 500 W Xe lamp (λ ≥ 400 nm); MB (15 mg L-1) and TC (10 mg L-1) | both MB and TC removal efficiency reached 95% in 2 h | [ |
2023 | B-TiO2‒x/Bi4O5I2/CDs | photocatalytic degradation of cephalexin (CEX), metronidazole (MNZ), and tetracycline (TC) | 50 W LED lamp (450-650 nm) | photodegradation rate of 718 × 10-4 min-1 for TC | [ |
2022 | TiO2/Bi2O3 | photocatalytic sterilization and water splitting | 300 W Xenon lamp (42.86 mW cm-2); E. coli with OD600 value of 1. 10 vol% TEOA and LED lamp (365 nm) for H2 generation | complete inactivation of 4.63 107 CFU mL-1 Escherichia coli cells within 6 h. H2 generation rate of 12.08 mmol h-1 g-1 | [ |
2022 | TiO2/ chlorophyll | photocatalytic sterilization | bacterial LB solution (20 μL, 1.47 × 109 cfu mL-1) | 2.94 × 107 cfu E. coli were killed by 1 cm-2 coated mask filters in 3 h | [ |
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[4] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[7] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[8] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[9] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[10] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[11] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[12] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[13] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[14] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[15] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||