Chinese Journal of Catalysis ›› 2024, Vol. 57: 96-104.DOI: 10.1016/S1872-2067(23)64587-5
• Articles • Previous Articles Next Articles
Quanquan Bie, Haibo Yin(), Yunlong Wang, Haiwei Su, Yue Peng, Junhua Li(
)
Received:
2023-09-27
Accepted:
2023-12-21
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: Supported by:
Quanquan Bie, Haibo Yin, Yunlong Wang, Haiwei Su, Yue Peng, Junhua Li. Electrocatalytic reduction of CO2 with enhanced C2 liquid products activity by the synergistic effect of Cu single atoms and oxygen vacancies[J]. Chinese Journal of Catalysis, 2024, 57: 96-104.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64587-5
Fig. 1. (a) Synthesis process of Cu SAs/UIO-H2. Cu (green), Zr (blue), N (light blue), C (gray), O (red), H (pink). HAADF-STEM (b,c) and high-resolution HAADF-STEM (d) images of Cu SAs/UIO-H2. Cu SAs are highlighted with yellow circles. (e) TEM image and EDS mappings of Cu SAs/UIO-H2.
Fig. 2. XANES (a) and FT-EXAFS (b) spectra of Cu SAs/UIO-H2, Cu SAs/UIO, and reference samples (Cu foil, CuO and Cu2O) at Cu K-edge. WT-EXAFS spectra of CuO (c), Cu2O (d), Cu foil (e), Cu SAs/UIO (f) and Cu SAs/UIO-H2 (g). EXAFS fitting curves of Cu SAs/UIO-H2 at R-space (h) and K-space (i).
Fig. 3. (a) LSV curves of Cu SAs/UIO-H2, Cu SAs/UIO, UIO-H2 and UIO. FEs of CO2RR products of Cu SAs/UIO (b), UIO-H2 (c), and Cu SAs/UIO-H2 (d) at different potentials, respectively. (e) Comparison of FE and activities between Cu SAs/UIO-H2 and Cu-based catalysts for CO2RR to C2H5OH. (f) Stability test and the FEs of C2H5OH over Cu SAs/UIO-H2 at -0.66 V (vs. RHE) for 12 h.
Fig. 4. (a) Time-dependent in-situ DRIFTS spectra of Cu SAs/UIO-H2 for CO2RR in KHCO3 electrolyte from 2 to 90 min. (b) Calculated activation energy for CO2-to-C2H5OH and HER. (c) Schematic pathway of the CO2RR process toward ethanol synthesis. (d) Calculated free energy diagram of CO2 reduction to intermediates over the samples.
|
[1] | Hao Cai, Fang Chen, Cheng Hu, Weiyi Ge, Tong Li, Xiaolei Zhang, Hongwei Huang. Oxygen vacancies mediated ultrathin Bi4O5Br2 nanosheets for efficient piezocatalytic peroxide hydrogen generation in pure water [J]. Chinese Journal of Catalysis, 2024, 57(2): 123-132. |
[2] | Yiping Li, Tanyuan Wang, Zhangyi Yao, Qi’an Chen, Qing Li. Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping [J]. Chinese Journal of Catalysis, 2024, 56(1): 51-73. |
[3] | Yanbin Qi, Yihua Zhu, Hongliang Jiang, Chunzhong Li. Promoting electrocatalytic oxidation of methanol to formate through interfacial interaction in NiMo oxide-CoMo oxide mixture-derived catalysts [J]. Chinese Journal of Catalysis, 2024, 56(1): 139-149. |
[4] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[5] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[6] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[7] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[8] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[9] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[10] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[11] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[12] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[14] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[15] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||