Chinese Journal of Catalysis ›› 2025, Vol. 79: 127-147.DOI: 10.1016/S1872-2067(25)64822-4
• Articles • Previous Articles Next Articles
Mingdong Zhang, Xueshuang Wu, Guiying Li(
), Changwei Hu(
)
Received:2025-05-01
Accepted:2025-07-31
Online:2025-12-05
Published:2025-10-27
Contact:
Guiying Li, Changwei Hu
Supported by:Mingdong Zhang, Xueshuang Wu, Guiying Li, Changwei Hu. Hierarchical manganese-containing TS-1 zeolite for the direct oxidation of cyclohexane to adipic acid with molecular oxygen: Synergy between matrix Ti and Mn species[J]. Chinese Journal of Catalysis, 2025, 79: 127-147.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64822-4
| Sample | O | Si | Ti | Mn | Ti b (wt%) | Mn b (wt%) |
|---|---|---|---|---|---|---|
| TS-1 | 56.71 | 43.28 | 0.01a | — | 0.02 | — |
| MTS-1 | 62.70 | 34.42 | 0.67 | 2.21 | 1.51 | 5.73 |
| HTS-1 | 61.61 | 38.20 | 0.19 | — | 0.44 | — |
| HMTS-1 | 62.18 | 37.21 | 0.21 | 0.40 | 0.48 | 1.06 |
| HMTS-2 | 62.63 | 36.44 | 0.16 | 0.77 | 0.39 | 2.04 |
| HMTS-3 | 64.02 | 34.54 | 0.16 | 1.28 | 0.38 | 3.40 |
| HMTS-4 | 66.85 | 31.11 | 0.16 | 1.88 | 0.37 | 5.04 |
| HMS-3 | 63.86 | 34.62 | — | 1.12 | — | 2.62 |
| HMTS-3c | 62.68 | 35.61 | 0.41 | 1.30 | 0.94 | 3.41 |
| HMTS-3d | 62.55 | 35.82 | 0.45 | 1.18 | 1.01 | 3.10 |
| HMS-3c | 63.58 | 35.23 | — | 1.19 | — | 3.15 |
| HMS-3d | 63.40 | 35.34 | — | 1.26 | — | 3.33 |
Table 1 Surface chemical composition determined by XPS (mol%).
| Sample | O | Si | Ti | Mn | Ti b (wt%) | Mn b (wt%) |
|---|---|---|---|---|---|---|
| TS-1 | 56.71 | 43.28 | 0.01a | — | 0.02 | — |
| MTS-1 | 62.70 | 34.42 | 0.67 | 2.21 | 1.51 | 5.73 |
| HTS-1 | 61.61 | 38.20 | 0.19 | — | 0.44 | — |
| HMTS-1 | 62.18 | 37.21 | 0.21 | 0.40 | 0.48 | 1.06 |
| HMTS-2 | 62.63 | 36.44 | 0.16 | 0.77 | 0.39 | 2.04 |
| HMTS-3 | 64.02 | 34.54 | 0.16 | 1.28 | 0.38 | 3.40 |
| HMTS-4 | 66.85 | 31.11 | 0.16 | 1.88 | 0.37 | 5.04 |
| HMS-3 | 63.86 | 34.62 | — | 1.12 | — | 2.62 |
| HMTS-3c | 62.68 | 35.61 | 0.41 | 1.30 | 0.94 | 3.41 |
| HMTS-3d | 62.55 | 35.82 | 0.45 | 1.18 | 1.01 | 3.10 |
| HMS-3c | 63.58 | 35.23 | — | 1.19 | — | 3.15 |
| HMS-3d | 63.40 | 35.34 | — | 1.26 | — | 3.33 |
| Sample | Framework Ti species (%) | Extra-framework Ti species (%) | Mn2+ (%) | Mn3+ (%) | Mn4+ (%) |
|---|---|---|---|---|---|
| TS-1 | 100.0 | — | — | — | — |
| MTS-1 | 41.6 | 58.4 | 51.3 | 37.8 | 10.9 |
| HTS-1 | 100.0 | — | — | — | — |
| HMTS-1 | 100.0 | — | 39.7 | 34.8 | 25.5 |
| HMTS-2 | 100.0 | — | 35.2 | 44.6 | 20.2 |
| HMTS-3 | 100.0 | — | 24.5 | 54.2 | 21.3 |
| HMTS-4 | 61.4 | 38.6 | 34.4 | 42.8 | 22.8 |
| HMS-3 | — | — | 21.6 | 56.1 | 22.3 |
Table 2 The Ti and Mn contents in different chemical states on the surface.
| Sample | Framework Ti species (%) | Extra-framework Ti species (%) | Mn2+ (%) | Mn3+ (%) | Mn4+ (%) |
|---|---|---|---|---|---|
| TS-1 | 100.0 | — | — | — | — |
| MTS-1 | 41.6 | 58.4 | 51.3 | 37.8 | 10.9 |
| HTS-1 | 100.0 | — | — | — | — |
| HMTS-1 | 100.0 | — | 39.7 | 34.8 | 25.5 |
| HMTS-2 | 100.0 | — | 35.2 | 44.6 | 20.2 |
| HMTS-3 | 100.0 | — | 24.5 | 54.2 | 21.3 |
| HMTS-4 | 61.4 | 38.6 | 34.4 | 42.8 | 22.8 |
| HMS-3 | — | — | 21.6 | 56.1 | 22.3 |
| Sample | SBET a (m2 g-1) | Smic (m2 g-1) | Sext (m2 g-1) | Vptotal (cm3 g-1) | Vmic (cm3 g-1) |
|---|---|---|---|---|---|
| TS-1 | 415.59 | 284.16 | 131.43 | 0.21 | 0.12 |
| MTS-1 | 384.65 | 258.58 | 126.08 | 0.20 | 0.11 |
| HTS-1 | 517.82 | 255.80 | 262.02 | 0.34 | 0.12 |
| HMTS-1 | 511.15 | 245.74 | 265.41 | 0.35 | 0.11 |
| HMTS-2 | 501.15 | 237.86 | 263.29 | 0.35 | 0.12 |
| HMTS-3 | 478.65 | 234.20 | 244.45 | 0.33 | 0.11 |
| HMTS-4 | 421.97 | 230.46 | 191.51 | 0.29 | 0.10 |
| HMS-3 | 483.51 | 239.73 | 243.78 | 0.33 | 0.12 |
Table 3 Physicochemical properties of different catalysts.
| Sample | SBET a (m2 g-1) | Smic (m2 g-1) | Sext (m2 g-1) | Vptotal (cm3 g-1) | Vmic (cm3 g-1) |
|---|---|---|---|---|---|
| TS-1 | 415.59 | 284.16 | 131.43 | 0.21 | 0.12 |
| MTS-1 | 384.65 | 258.58 | 126.08 | 0.20 | 0.11 |
| HTS-1 | 517.82 | 255.80 | 262.02 | 0.34 | 0.12 |
| HMTS-1 | 511.15 | 245.74 | 265.41 | 0.35 | 0.11 |
| HMTS-2 | 501.15 | 237.86 | 263.29 | 0.35 | 0.12 |
| HMTS-3 | 478.65 | 234.20 | 244.45 | 0.33 | 0.11 |
| HMTS-4 | 421.97 | 230.46 | 191.51 | 0.29 | 0.10 |
| HMS-3 | 483.51 | 239.73 | 243.78 | 0.33 | 0.12 |
Fig. 3. (a) XRD patterns of catalyst samples. (b) Enlarged scale between 2θ = 7.4° and 9.7° of (a) for HMS-3, HTS-1, HMTS-1, HMTS-2, HMTS-3, and HMTS-4.
Fig. 4. TEM of catalyst samples prepared using different methods. (a-c) TS-1; (d-f) MTS-1; (g-i) HTS-1; (j-l) HMTS-3. (m) The corresponding EDS mapping of Fig. 4(e). (n) The corresponding EDS mapping of Fig. 4(k).
Fig. 5. (a) UV-vis spectra of TS-1, MTS-1, HTS-1, HMTS-3 and HMS-3 (no significant offset). (b) UV-vis spectra of HMTS-1, HMTS-2, HMTS-3, HMTS-4 and HMS-3 (no significant offset). (c) FT-IR spectra of TS-1, MTS-1, HTS-1 and HMTS-3. (d) FT-IR spectra of HMTS-1, HMTS-2, HMTS-3, HMTS-4 and HMS-3.
Fig. 6. (a) Mn K-edge XANES spectra of HMTS-3, HMS-3 and different reference samples. (b) Ti K-edge XANES spectra of HMTS-3, HTS-1 and different reference samples. (c) Fourier transform k3-weighted Mn EXAFS spectra in the R-spacing of different samples. (d) Fourier transform k3-weighted Ti EXAFS spectra in the R-spacing of different samples.
Fig. 7. WT-EXFAS spectra of Mn species. (a) Mn foil; (b) MnO2; (c) Mn3O4; (d) HMTS-3; (e) HMS-3. WT-EXFAS spectra of Ti species. (f) Ti foil; (g) TiO2; (h) HMTS-3; (i) HTS-1.
| Entry | Catalyst | Conv. (%) | Selectivity (%) | ||||
|---|---|---|---|---|---|---|---|
| A | B | KA oil b | C | D | |||
| 1 | Blank | trace | — | — | — | — | — |
| 2 | TS-1 | 18.2 | 40.2 | 25.7 | 65.9 | 20.5 | 13.6 |
| 3 | MTS-1 | 26.4 | 34.7 | 20.8 | 55.5 | 30.5 | 14.0 |
| 4 | HTS-1 | 43.4 | 30.2 | 18.3 | 48.5 | 41.1 | 10.4 |
| 5 | HMS-3 | 35.1 | 27.2 | 16.5 | 43.7 | 46.3 | 10.0 |
| 6 | HMTS-1 | 58.3 | 22.1 | 13.4 | 35.5 | 54.7 | 9.8 |
| 7 | HMTS-2 | 74.4 | 19.0 | 7.3 | 26.3 | 62.2 | 11.5 |
| 8 | HMTS-3 | 81.6 | 11.5 | 3.6 | 15.1 | 71.5 | 13.4 |
| 9 | HMTS-4 | 79.1 | 11.9 | 2.6 | 14.5 | 68.3 | 17.2 |
| 10 c | HMS-3 & HTS-1 | 61.2 | 17.3 | 10.6 | 27.9 | 65.7 | 10.4 |
| 11d | HMTS-3 | — | — | — | — | — | — |
| 12e | HMTS-3 | — | — | — | — | — | — |
Table 4 Catalytic performance of different catalystsa.
| Entry | Catalyst | Conv. (%) | Selectivity (%) | ||||
|---|---|---|---|---|---|---|---|
| A | B | KA oil b | C | D | |||
| 1 | Blank | trace | — | — | — | — | — |
| 2 | TS-1 | 18.2 | 40.2 | 25.7 | 65.9 | 20.5 | 13.6 |
| 3 | MTS-1 | 26.4 | 34.7 | 20.8 | 55.5 | 30.5 | 14.0 |
| 4 | HTS-1 | 43.4 | 30.2 | 18.3 | 48.5 | 41.1 | 10.4 |
| 5 | HMS-3 | 35.1 | 27.2 | 16.5 | 43.7 | 46.3 | 10.0 |
| 6 | HMTS-1 | 58.3 | 22.1 | 13.4 | 35.5 | 54.7 | 9.8 |
| 7 | HMTS-2 | 74.4 | 19.0 | 7.3 | 26.3 | 62.2 | 11.5 |
| 8 | HMTS-3 | 81.6 | 11.5 | 3.6 | 15.1 | 71.5 | 13.4 |
| 9 | HMTS-4 | 79.1 | 11.9 | 2.6 | 14.5 | 68.3 | 17.2 |
| 10 c | HMS-3 & HTS-1 | 61.2 | 17.3 | 10.6 | 27.9 | 65.7 | 10.4 |
| 11d | HMTS-3 | — | — | — | — | — | — |
| 12e | HMTS-3 | — | — | — | — | — | — |
Fig. 8. Effect of temperature (0.05 g of catalyst, 2.34 g substrate, 27 mL acetonitrile, 2.0 MPa O2, 6 h) (a), reaction pressure (0.05 g of catalyst, 2.34 g substrate, 27 mL acetonitrile, 140 °C, 6 h) (b), catalyst amount (2.34 g substrate, 27 mL acetonitrile, 2.0 MPa O2, 140 °C, 6 h) (c) and reaction time (0.05 g of catalyst, 2.34 g substrate, 27 mL acetonitrile, 2.0 MPa O2, 140 °C) (d) on the conversion of cyclohexane and AA vs. KA oil selectivity over HMTS-3 catalysts (“others” were mainly glutaric acid and succinic acid).
Fig. 9. (a) Reaction results of HTS-1, HMS-3 and HMTS-3 with different substrates. (b) O2-TPD patterns of all catalysts (significant offset can be observed at 100?140 °C). (c) EPR spectra for oxygen vacancy. (d). NH3-TPD patterns of all catalysts. (e) Py-IR patterns of all catalysts. (f) Enlarged scale between wavenumbers = 1510 and 1560 cm?1 of Fig. 9(e).
| Sample | Total acidity a (mmol g-1) | B/L ratio b | CBAS c (mmol g-1) | CBAS d (mmol g-1) |
|---|---|---|---|---|
| TS-1 | 0.27 | 0.06 | 0.015 | 0.018 |
| MTS-1 | 0.25 | 0.04 | 0.009 | 0.008 |
| HTS-1 | 0.25 | 0.04 | 0.009 | 0.011 |
| HMTS-1 | 0.28 | 0.05 | 0.013 | 0.014 |
| HMTS-2 | 0.35 | 0.05 | 0.017 | 0.016 |
| HMTS-3 | 0.42 | 0.04 | 0.017 | 0.019 |
| HMTS-4 | 0.31 | 0.04 | 0.012 | 0.013 |
| HMS-3 | 0.35 | 0.04 | 0.014 | 0.016 |
Table 5 Acidity properties of different samples.
| Sample | Total acidity a (mmol g-1) | B/L ratio b | CBAS c (mmol g-1) | CBAS d (mmol g-1) |
|---|---|---|---|---|
| TS-1 | 0.27 | 0.06 | 0.015 | 0.018 |
| MTS-1 | 0.25 | 0.04 | 0.009 | 0.008 |
| HTS-1 | 0.25 | 0.04 | 0.009 | 0.011 |
| HMTS-1 | 0.28 | 0.05 | 0.013 | 0.014 |
| HMTS-2 | 0.35 | 0.05 | 0.017 | 0.016 |
| HMTS-3 | 0.42 | 0.04 | 0.017 | 0.019 |
| HMTS-4 | 0.31 | 0.04 | 0.012 | 0.013 |
| HMS-3 | 0.35 | 0.04 | 0.014 | 0.016 |
Fig. 11. Mechanistic pathway for oxidative conversion of cyclohexane to AA, (2), (3), (4), (6), (7), (8) represent the possible catalytically active species shown in Scheme 1.
Fig. 12. (a) Recyclability tests of HMTS-3 catalyst for cyclohexane oxidation. XRD patterns (b), and Ti 2p (c) and C 1s (d) XPS spectra of recycled catalysts, of recycled catalysts.
|
| [1] | Changpo Ma, Ying Lai, Tiange Zhao, Xiaoxuan Zhang, Haichao Liu, Weiran Yang. Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers [J]. Chinese Journal of Catalysis, 2024, 56(1): 122-129. |
| [2] | Shujing Zhang, Hong Ma, Yuxia Sun, Xin Liu, Meiyun Zhang, Yang Luo, Jin Gao, Jie Xu. Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water [J]. Chinese Journal of Catalysis, 2021, 42(12): 2216-2224. |
| [3] | Hongen Cao, Boran Zhu, Yufan Yang, Lin Xu, Lei Yu, Qing Xu. Recent advances on controllable and selective catalytic oxidation of cyclohexene [J]. Chinese Journal of Catalysis, 2018, 39(5): 899-907. |
| [4] | Yicheng Zhang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Cyclohexane oxidation:Small organic molecules as catalysts [J]. Chinese Journal of Catalysis, 2014, 35(3): 279-285. |
| [5] | WANG Xiao-Xing, LI Gang, LIU Li-Ping, LIU Hai-鸥. Synthesis of Hierarchical TS-1 Zeolite Using Cationic Polymer as Mesoporous Template [J]. Chinese Journal of Catalysis, 2011, 32(10): 1656-1661. |
| [6] | LIANG Zhenhai*;SUN Hongyan;CUI Yuqing. Catalytic Oxidation of Cyclohexanol on the Ti/Ni/NiO Electrode [J]. Chinese Journal of Catalysis, 2009, 30(3): 254-258. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||