Chinese Journal of Catalysis ›› 2026, Vol. 81: 259-271.DOI: 10.1016/S1872-2067(25)64851-0
• Article • Previous Articles Next Articles
Congcong Wanga,b,c, Yongkang Quand, Suili Shia,b,c, Guorong Wanga,b,c(
), Zhiliang Jina,b,c
Received:2025-06-19
Accepted:2025-08-13
Online:2026-02-18
Published:2025-12-26
Contact:
*E-mail: guorongwang@nun.edu.cn (G. Wang).
Supported by:Congcong Wang, Yongkang Quan, Suili Shi, Guorong Wang, Zhiliang Jin. Self-assembling 3D/2D ZnIn2S4/CN-NH4 to construct S-scheme heterojunctions for the efficient production of H2O2 in pure water[J]. Chinese Journal of Catalysis, 2026, 81: 259-271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64851-0
Fig. 1. SEM images of flower-like ZnIn2S4 (a), sheet-like CN-NH4 (b), and ZnIn2S4/CN-NH4 (c). The TEM image (d), locally magnified TEM image (e), HRTEM image and corresponding SAED image (f) of ZnIn2S4/CN-NH4. EDS element mapping images of Zn (h), In (i), S (j), C (k), and N (l).
Fig. 2. XRD patterns of ZnIn2S4, CN-NH4, ZnIn2S4/CN-NH4-20 (a) and samples in various proportions (b). (c) The FT-IR spectra of ZnIn2S4, CN-NH4 and ZnIn2S4/CN-NH4-20. N2 adsorption-desorption isotherms and pore size distribution curves of ZnIn2S4 (d), CN-NH4 (e), and ZnIn2S4/CN-NH4-20 (f).
| Sample | ABET (m2 g‒1) | Pore volume (cm3 g‒1) | Average pore size (nm) |
|---|---|---|---|
| ZnIn2S4 | 107.13 | 0.24 | 4.58 |
| CN-NH4 | 37.41 | 0.20 | 18.31 |
| ZnIn2S4/CN-NH4-20 | 40.87 | 0.16 | 5.77 |
Table 1 BET surface area (ABET), pore diameter, and pore volume of ZnIn2S4, CN-NH4, and ZnIn2S4/CN-NH4-20.
| Sample | ABET (m2 g‒1) | Pore volume (cm3 g‒1) | Average pore size (nm) |
|---|---|---|---|
| ZnIn2S4 | 107.13 | 0.24 | 4.58 |
| CN-NH4 | 37.41 | 0.20 | 18.31 |
| ZnIn2S4/CN-NH4-20 | 40.87 | 0.16 | 5.77 |
Fig. 3. (a) UV-vis DRS spectra of all samples. (b) Band gap diagram of ZnIn2S4 and CN-NH4. The M-S plots of ZnIn2S4 (c) and CN-NH4 (d) at different frequencies.
Fig. 5. Transient photocurrent responses (a), LSV curves (b) and electrochemical active area plots (c) of ZnIn2S4, CN-NH4 and ZnIn2S4/CN-NH4. CV curves of ZnIn2S4 (d), CN-NH4 (e), and ZnIn2S4/CN-NH4 (f) at different scan rates.
Fig. 6. 2D pseudocolor TA plots of ZnIn2S4 (a), CN-NH4 (b), and ZnIn2S4/CN-NH4-20 (c). TA spectra of ZnIn2S4 (d), CN-NH4 (e), and ZnIn2S4/CN-NH4-20 (f) at indicated time delays. Normalized fs-TA decay curves of ZnIn2S4 at 710 nm (g), CN-NH4 at 388 nm (h), and ZnIn2S4/CN-NH4-20 at 710 nm (i).
Fig. 7. (a) The yield of H2O2 per 15 min of pure ZnIn2S4, CN-NH4 and samples in various proportions (mmol L?1). (b) Comparison of pure ZnIn2S4, CN-NH4 and the performance of the optimal proportion. (c) Comparison of H2O2 production performance for ZnIn2S4/CN-NH4-20 under N2 and O2 atmospheres. (d) XRD patterns of ZnIn2S4/CN-NH4-20 before and after the reaction. (e) Zeta potentials of ZnIn2S4, CN-NH4, and ZnIn2S4/CN-NH4-20. (f) ESR spectra detecting superoxide radicals (•O2?) for ZnIn2S4, CN-NH4, and ZnIn2S4/CN-NH4-20 under dark conditions and after 5 min of light irradiation. (g) A comparison chart of the H2O2 production rate of ZnIn2S4/CN-NH4-20 with some recent works.
Fig. 8. Theoretical calculation model, work function (a), density of states (b) and band gap (c) of ZnIn2S4. Theoretical calculation model, work function (d), density of states (e) and band gap (f) of CN-NH4. (g) Schematic diagram of H2O2 production by 2e? ORR in tight S-scheme ZnIn2S4/CN-NH4. (h) The Gibbs free energy distribution of the 2e? ORR process of ZnIn2S4 and ZnIn2S4/CN-NH4.
|
| [1] | Qinghua Liu, Peiqing Cai, Hengshuai Li, Xue-Yang Ji, Dafeng Zhang, Xipeng Pu. Visible-light-driven hydrogen evolution over CdS/CuWO4 S-Scheme heterojunctions: Dual synergistic enhancement via interfacial charge transfer and photothermal activation [J]. Chinese Journal of Catalysis, 2026, 81(2): 299-309. |
| [2] | Jiaping Lu, Chao Lin, Chao Li, Hongjie Shi, Nengyi Liu, Wandong Xing, Sibo Wang, Guigang Zhang, Teng-Teng Chen, Xiong Chen. Bipyridine-integrated bisoxazole-based donor-acceptor covalent organic framework for enhanced photocatalytic H2O2 synthesis [J]. Chinese Journal of Catalysis, 2026, 81(2): 185-194. |
| [3] | Yongsheng Hu, Shiji Du, Jihui Lang, Huilian Liu, Xuefei Li, Qi Zhang, Ming Lu, Xin Li, Binrong Li, Maobin Wei, Lili Yang. Rational construction of MXene-derived TiO2/CoNiO2 dual-site S-scheme heterojunction for boosting C-C coupling toward efficient photocatalytic CO2-to-C2H4 conversion [J]. Chinese Journal of Catalysis, 2026, 81(2): 227-245. |
| [4] | Hui-Min Xu, Xiao-Qi Gong, Kai-Hang Yue, Chen-Jin Huang, Hong-Rui Zhu, Lian-Jie Song, Gao-Ren Li. Fe and Co bimetallic single-atoms coordinated by N and Te as bifunctional oxygen reduction/evolution catalysts for high-performance zinc-air battery [J]. Chinese Journal of Catalysis, 2026, 81(2): 319-332. |
| [5] | Haihong Zhong, Qianqian Xu, Weiting Yang, Nicolas Alonso-Vante, Yongjun Feng. Composition regulation of iron-group transition metal chalcogenides for the oxygen electrocatalysis: Electronic structure and surface reconstruction [J]. Chinese Journal of Catalysis, 2026, 81(2): 37-68. |
| [6] | Bolin Yang, Fei Jin, Zhiliang Jin. Efficient photocatalytic hydrogen production by a heterojunction strategy with covalent organic frameworks loaded with non-precious-metal semiconductors [J]. Chinese Journal of Catalysis, 2026, 81(2): 172-184. |
| [7] | Xiaofeng Chen, Yixuan Huang, Wanbin Lin, Jiaojiao Xia, Xirui Zhang, Wenjie Gong, Chuqian Jian, Hao Liu, Jiacheng Zeng, Jiang Liu, Yu Chen. Mn-doping induced phase segregation of air electrodes enables high-performance and durable reversible protonic ceramic cells [J]. Chinese Journal of Catalysis, 2026, 81(2): 333-343. |
| [8] | Liyuan Xiao, Zhenlu Wang, Jingqi Guan. Advances in multinuclear metal-organic frameworks for electrocatalysis [J]. Chinese Journal of Catalysis, 2026, 80(1): 59-91. |
| [9] | Yandong Xu, Zihui Jing, Wenhao Su, Jiale Xu, Mingliang Wang. Synergistic coupling of H2O2 production and furoic acid synthesis over B-TiO2@COF S-scheme bifunctional photocatalyst [J]. Chinese Journal of Catalysis, 2026, 80(1): 135-145. |
| [10] | Shaodan Wang, Heng Yang, Lijun Xue, Jianjun Zhang, Shuxin Ouyang, Lili Wen. S-scheme heterojunctions of metal-doped ZnIn2S4/TpPa-1: Regulating H adsorption/desorption and internal electric field for boosted dual-functional photocatalysis [J]. Chinese Journal of Catalysis, 2026, 80(1): 159-173. |
| [11] | Yana Men, Yuzhou Jiao, Yanxing Zheng, Xiaoyan Wang, Shengli Chen, Peng Li. pH-dependent protic ionic liquid tuning effect on oxygen reduction activity of a molecular iron catalyst and its electrochemical interfacial origin [J]. Chinese Journal of Catalysis, 2026, 80(1): 258-269. |
| [12] | Haopeng Jiang, Jinhe Li, Xiaohui Yu, Huilong Dong, Weikang Wang, Qinqin Liu. Interface engineering of covalent β-ketoenamine-bridged S-scheme heterojunction for synergistic solar-powered CO2-to-CO conversion paired with selective alcohol oxidation [J]. Chinese Journal of Catalysis, 2026, 80(1): 113-122. |
| [13] | Rundong Chen, Yuhang Zhang, Bingquan Xia, Xianlong Zhou, Yanzhao Zhang, Shantang Liu. Enhanced photocatalytic production of hydrogen and benzaldehyde over a dual-function ZnxCd1-xSy/FePS3 S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2026, 80(1): 123-134. |
| [14] | Xuan Zhang, Lin Zhou, Teng Yan, Xiaohu Zhang, Hao Chen. Fabrication of S-scheme heterojunction between covalent organic frameworks and Ni-ZIF-8 and its photocatalytic hydrogen production performance [J]. Chinese Journal of Catalysis, 2026, 80(1): 200-212. |
| [15] | Wenbo Shi, Kai Zhu, Xiaogang Fu, Chenhong Liu, Yang Yuan, Jialiang Pan, Qing Zhang, Zhengyu Ba. Dual-site confinement strategy tuning Fe-N-C electronic structure to enhance oxygen reduction performance in PEM fuel cells [J]. Chinese Journal of Catalysis, 2026, 80(1): 293-303. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||