Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (12): 3154-3160.DOI: 10.1016/S1872-2067(22)64126-3
• Articles • Previous Articles Next Articles
Lulu Ana,†, Shaofeng Denga,†, Xuyun Guob, Xupo Liua, Tonghui Zhaoa, Ke Chena, Ye Zhub, Yuxi Fua, Xu Zhaoa,#(), Deli Wanga,*(
)
Received:
2022-03-30
Accepted:
2022-05-09
Online:
2022-12-18
Published:
2022-10-18
Contact:
Xu Zhao, Deli Wang
About author:
First author contact:†Contributed equally to this work.
Supported by:
Lulu An, Shaofeng Deng, Xuyun Guo, Xupo Liu, Tonghui Zhao, Ke Chen, Ye Zhu, Yuxi Fu, Xu Zhao, Deli Wang. Enhancing hydrogen electrocatalytic oxidation on Ni3N/MoO2 in-plane heterostructures in alkaline solution[J]. Chinese Journal of Catalysis, 2022, 43(12): 3154-3160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64126-3
Fig. 1. (a) Schematic illustration of the preparation of Ni3N/MoO2 in-plane heterostructures. SEM (b), TEM (c), HRTEM (d) images, and element mapping (e?i) of Ni3N/MoO2 in-plane heterostructures.
Fig. 2. (a) XRD patterns of Ni3N and Ni3N/MoO2 in-plane heterostructures; Ni 2p (b), N 1s (c) and Mo 3d (d) XPS spectra of Ni3N/MoO2 in-plane heterostructures.
Fig. 3. (a) HOR polarization curves of Ni3N/MoO2, Ni3N, MoO2, Ni and commercial Pt/C with a sweep rate of 2 mV s-1 in H2-saturated KOH solution of 0.1 mol L?1. (b) Polarization curves of Ni3N/MoO2 at varied rotation rate. The inset showed the Koutecky-Levich plot. (c) Polarization curves of Ni3N/MoO2 before and after CV. (d) HOR polarization curves of Ni3N/MoO2 and Pt/C with and without CO.
Fig. 4. (a) Micro-polarization regions of Ni, Ni3N, and Ni3N/MoO2 in-plane heterostructures. (b) Exchange current density and mass activity of Ni, Ni3N, and Ni3N/MoO2 in-plane heterostructures. (c) Tafel plots of the kinetic current densities on Ni3N/MoO2, Ni3N, and Ni in-plane heterostructures. (d) Comparison of the mass activity of various studied HOR catalysts.
Fig. 5. (a) CO stripping curves of Ni3N and Ni3N/MoO2 in KOH solution of 0.1 mol L?1 with a sweep rate of 20 mV s-1. (b) CV curves of Ni3N and Ni3N/MoO2 in H2 or N2-saturated 0.1 mol L?1 KOH, respectively. (c) Schematic illustration of the mechanism for enhanced HOR catalyzed by Ni3N/MoO2 in-plane heterostructures.
|
[1] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[2] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[3] | Xingzong Dong, Guangye Liu, Zhaoan Chen, Quan Zhang, Yunpeng Xu, Zhongmin Liu. Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2023, 46(3): 137-147. |
[4] | Yunjian Ling, Yihua Ran, Weipeng Shao, Na Li, Feng Jiao, Xiulian Pan, Qiang Fu, Zhi Liu, Fan Yang, Xinhe Bao. Probing active species for CO hydrogenation over ZnCr2O4 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2017-2025. |
[5] | Pengyu Han, Na Yao, Wei Zuo, Wei Luo. Manipulating the electronic structure of Ni electrocatalyst through d-p orbital hybridization induced by B-doping for efficient alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1527-1534. |
[6] | Peng Li, Guoqiang Zhao, Ningyan Cheng, Lixue Xia, Xiaoning Li, Yaping Chen, Mengmeng Lao, Zhenxiang Cheng, Yan Zhao, Xun Xu, Yinzhu Jiang, Hongge Pan, Shi Xue Dou, Wenping Sun. Toward enhanced alkaline hydrogen electrocatalysis with transition metal-functionalized nitrogen-doped carbon supports [J]. Chinese Journal of Catalysis, 2022, 43(5): 1351-1359. |
[7] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678. |
[8] | Cong Peng, Lixiao Han, Jinming Huang, Shengyao Wang, Xiaohu Zhang, Hao Chen. Comprehensive investigation on robust photocatalytic hydrogen production over C3N5 [J]. Chinese Journal of Catalysis, 2022, 43(2): 410-420. |
[9] | Qi Hao, Yongmeng Wu, Cuibo Liu, Yanmei Shi, Bin Zhang. Unveiling subsurface hydrogen inhibition for promoting electrochemical transfer semihydrogenation of alkynes with water [J]. Chinese Journal of Catalysis, 2022, 43(12): 3095-3100. |
[10] | Junxiang Chen, Yaxin Ji. Locating the cocktail and scaling-relation breaking effects of high-entropy alloy catalysts on the electrocatalytic volcano plot [J]. Chinese Journal of Catalysis, 2022, 43(11): 2889-2897. |
[11] | Zhongming Wang, Hong Wang, Xiaoxiao Wang, Xun Chen, Yan Yu, Wenxin Dai, Xianzhi Fu. Thermo-driven photocatalytic CO reduction and H2 oxidation over ZnO via regulation of reactant gas adsorption electron transfer behavior [J]. Chinese Journal of Catalysis, 2021, 42(9): 1538-1552. |
[12] | Wugen Huang, Jun Cai, Jun Hu, Junfa Zhu, Fan Yang, Xinhe Bao. Atomic structures and electronic properties of Cr-doped ZnO(10$\overline{1}$0) surfaces [J]. Chinese Journal of Catalysis, 2021, 42(6): 971-979. |
[13] | Caili Xu, Qian Chen, Rong Ding, Shengtian Huang, Yun Zhang, Guangyin Fan. Sustainable solid-state synthesis of uniformly distributed PdAg alloy nanoparticles for electrocatalytic hydrogen oxidation and evolution [J]. Chinese Journal of Catalysis, 2021, 42(2): 251-258. |
[14] | Yang Qiu, Xiaohong Xie, Wenzhen Li, Yuyan Shao. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design [J]. Chinese Journal of Catalysis, 2021, 42(12): 2094-2104. |
[15] | Liping Yang, Jiacheng Xing, Danhua Yuan, Lin Li, Yunpeng Xu, Zhongmin Liu. Synthesis of high-crystallinity MIL-125 with outstanding xylene isomer separation performance [J]. Chinese Journal of Catalysis, 2021, 42(12): 2313-2321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||