Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (5): 1360-1370.DOI: 10.1016/S1872-2067(21)63978-5
• Articles • Previous Articles Next Articles
Zhiying Xua, Chunyu Guoa,f, Xin Liub, Ling Lia, Liang Wanga, Haolan Xuc, Dongke Zhangd, Chunhu Lia, Qin Lie(), Wentai Wanga(
)
Received:
2021-09-16
Accepted:
2021-11-15
Online:
2022-05-18
Published:
2022-03-23
Contact:
Qin Li, Wentai Wang
Supported by:
Zhiying Xu, Chunyu Guo, Xin Liu, Ling Li, Liang Wang, Haolan Xu, Dongke Zhang, Chunhu Li, Qin Li, Wentai Wang. Ag nanoparticles anchored organic/inorganic Z-scheme 3DOMM-TiO2‒x-based heterojunction for efficient photocatalytic and photoelectrochemical water splitting[J]. Chinese Journal of Catalysis, 2022, 43(5): 1360-1370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63978-5
Fig. 1. TEM images of PANI/3DOMM-TiO2-x (a) and Ag/PANI/ 3DOMM-TiO2-x (b); HRTEM images of 3DOMM-TiO2-x (c) and Ag/PANI/ 3DOMM-TiO2-x (d); (e) EDS images of Ag/PANI/3DOMM-TiO2-x.
Fig. 3. (a) XPS survey spectrum of Ag/PANI/3DOMM-TiO2-x; (b) High resolution C 1s spectra; (c) N 1s spectra; (d) Ti 2p spectra; (e) O 1s spectra; (f) Ag 3d spectra.
Fig. 4. UV-Vis DRS pattern (a) and the Tauc plot of the (αhν)1/2 vs. photon energy (hν) (b) of 3DOMM-TiO2-x, PANI/3DOMM-TiO2-x and Ag/PANI/3DOMM-TiO2-x; (c) The XPS valence band spectrum of Ag/PANI/3DOMM-TiO2-x.
Fig. 5. Transient photocurrent curves (a) and EIS Nyquist plots (b) of 3DOMM-TiO2, 3DOMM-TiO2-x, PANI/3DOMM-TiO2-x and Ag/PANI/3DOMM-TiO2-x (1.23V vs. RHE).
Fig. 7. LSV measurements (a) and ABPE (b) of 3DOMM-TiO2, 3DOMM-TiO2-x, PANI/3DOMM-TiO2-x and Ag/PANI/3DOMM-TiO2-x; (c) Stability at 1.23 V vs. RHE of Ag/PANI/3DOMM-TiO2-x photoanodes; (d) Linear current-voltage curves with a scan rate of 50 mV/s of 3DOMM-TiO2 and Ag/PANI/3DOMM-TiO2-x photoelectrodes without illumination.
Fig. 8. (a) J-V curves of 3DOMM-TiO2 and Ag/PANI@3DOMM-TiO2-x measured with 1 mol/L NaSO3 and without 1 mol/L NaSO3; (b) ηinjection of 3DOMM-TiO2 and Ag/PANI/3DOMM-TiO2-x.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[4] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[5] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[6] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[7] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[8] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[9] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[10] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[11] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[12] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[13] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[14] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[15] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||