Chinese Journal of Catalysis ›› 2024, Vol. 56: 122-129.DOI: 10.1016/S1872-2067(23)64577-2
• Articles • Previous Articles Next Articles
Changpo Maa, Ying Laia, Tiange Zhaoa, Xiaoxuan Zhanga, Haichao Liub,*(), Weiran Yanga,*(
)
Received:
2023-09-22
Accepted:
2023-12-04
Online:
2024-01-18
Published:
2024-01-10
Contact:
*E-mail: hcliu@pku.edu.cn (H. Liu), wyang16@ncu.edu.cn (W. Yang).
Supported by:
Changpo Ma, Ying Lai, Tiange Zhao, Xiaoxuan Zhang, Haichao Liu, Weiran Yang. Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers[J]. Chinese Journal of Catalysis, 2024, 56: 122-129.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64577-2
![]() | |||||
---|---|---|---|---|---|
Entry | Catalyst | Promoter | Solvent | Conversion (%) | Yield of adipic acid (%) |
1 | RhCl3 | I2 | AcOH/H2O | 100 | 84.3 |
2 | IrCl3 | I2 | AcOH/H2O | 98.1 | 6.1 |
3 | RuCl3 | I2 | AcOH/H2O | 83.5 | N. D |
4 | PdCl2 | I2 | AcOH/H2O | 80.3 | N. D |
5 | NiCl2 | I2 | AcOH/H2O | 77.5 | N. D |
6 | CoCl2 | I2 | AcOH/H2O | 70.2 | N. D |
7 | [RhCl(COD)]2 | I2 | AcOH/H2O | 100 | 72.3 |
8 | [RhCl(CO)2]2 | I2 | AcOH/H2O | 100 | 80.9 |
9 | RhCl3 | LiI | AcOH/H2O | 71.1 | 12.2 |
10 | RhCl3 | NaI | AcOH/H2O | 69.8 | 11.4 |
11 | RhCl3 | MgI2 | AcOH/H2O | 65.2 | 5.5 |
12 | RhCl3 | CH3I | AcOH/H2O | 49.6 | 8.6 |
13 | RhCl3 | HI | AcOH/H2O | 100 | 84.5 |
14 | RhCl3 | HCl | AcOH/H2O | 55.5 | N. D |
15 | RhCl3 | HBr | AcOH/H2O | 63.4 | N. D |
16 a | RhCl3 | I2 | AcOH | 100 | 50.0 |
17 | RhCl3 | I2 | Propionic acid/H2O | 100 | 50.5 |
18 | RhCl3 | I2 | CF3COOH/H2O | 100 | 83.1 |
19 | RhCl3 | I2 | DMI/H2O | 68.3 | N. D |
Table 1 Catalytic system exploration for adipic acid synthesis from THF.
![]() | |||||
---|---|---|---|---|---|
Entry | Catalyst | Promoter | Solvent | Conversion (%) | Yield of adipic acid (%) |
1 | RhCl3 | I2 | AcOH/H2O | 100 | 84.3 |
2 | IrCl3 | I2 | AcOH/H2O | 98.1 | 6.1 |
3 | RuCl3 | I2 | AcOH/H2O | 83.5 | N. D |
4 | PdCl2 | I2 | AcOH/H2O | 80.3 | N. D |
5 | NiCl2 | I2 | AcOH/H2O | 77.5 | N. D |
6 | CoCl2 | I2 | AcOH/H2O | 70.2 | N. D |
7 | [RhCl(COD)]2 | I2 | AcOH/H2O | 100 | 72.3 |
8 | [RhCl(CO)2]2 | I2 | AcOH/H2O | 100 | 80.9 |
9 | RhCl3 | LiI | AcOH/H2O | 71.1 | 12.2 |
10 | RhCl3 | NaI | AcOH/H2O | 69.8 | 11.4 |
11 | RhCl3 | MgI2 | AcOH/H2O | 65.2 | 5.5 |
12 | RhCl3 | CH3I | AcOH/H2O | 49.6 | 8.6 |
13 | RhCl3 | HI | AcOH/H2O | 100 | 84.5 |
14 | RhCl3 | HCl | AcOH/H2O | 55.5 | N. D |
15 | RhCl3 | HBr | AcOH/H2O | 63.4 | N. D |
16 a | RhCl3 | I2 | AcOH | 100 | 50.0 |
17 | RhCl3 | I2 | Propionic acid/H2O | 100 | 50.5 |
18 | RhCl3 | I2 | CF3COOH/H2O | 100 | 83.1 |
19 | RhCl3 | I2 | DMI/H2O | 68.3 | N. D |
Fig. 2. (a) Effect of I2 amount on the reaction. Reaction conditions: 90 μmol Rh catalyst (based on the metal), I2, 1 mmol THF, 3 mL AcOH, 2 mL H2O, 3 MPa H2, 3 MPa CO, 170 °C, 10 h. (b) Effect of ratio of acetic acid to water on the reaction. Reaction conditions: 90 μmol Rh catalyst (based on the metal), 1 mmol I2, 1 mmol THF, AcOH+H2O 5 mL, 3 MPa H2, 3 MPa CO, 170 °C, 10 h. (c) Effect of temperature on the reaction. Reaction conditions: 90 μmol Rh catalyst (based on the metal), 1 mmol I2, 1 mmol THF, 3 mL AcOH, 2 mL H2O, 3 MPa H2, 3 MPa CO, 10 h. (d) Effect of H2 and CO pressure on the reaction. Reaction conditions: 90 μmol Rh catalyst (based on the metal), 1 mmol I2, 1 mmol THF, 3 mL AcOH, 2 mL H2O, H2, CO, 170 °C, 10 h. (ADA: adipic acid, VA: valeric acid, 2-MA: 2-methylbutanoic acid).
Entry | Substrate | Yield a (%) | Product |
---|---|---|---|
1 | ![]() | 80.4 | ![]() |
2 | ![]() | 84.3 | ![]() |
3 | ![]() | 73.5 | ![]() |
4 | ![]() | 72.9 | ![]() |
5 | | 81.1 | ![]() |
6 | ![]() | 78.9 | ![]() |
7 | ![]() | 79.1 | ![]() |
8 | ![]() | 79.3 | ![]() |
Table 2 Synthesis of dicarboxylic acids using various cyclic ethers and diols.
Entry | Substrate | Yield a (%) | Product |
---|---|---|---|
1 | ![]() | 80.4 | ![]() |
2 | ![]() | 84.3 | ![]() |
3 | ![]() | 73.5 | ![]() |
4 | ![]() | 72.9 | ![]() |
5 | | 81.1 | ![]() |
6 | ![]() | 78.9 | ![]() |
7 | ![]() | 79.1 | ![]() |
8 | ![]() | 79.3 | ![]() |
Entry | Substrate | Yield a (mol%) | Product | Yield distribution |
---|---|---|---|---|
1 | ![]() | 199 | ![]() | — |
2 | ![]() | 59.4 | ![]() | — |
3 | ![]() | 92.7 | ![]() | 1:2 = 62:38 |
4 | ![]() | 99 | ![]() | — |
5 | ![]() | 56.8 | ![]() | — |
6 | ![]() | 18 | ![]() | 1:2 = 67:33 |
55 | ![]() | 1:2 = 60:40 | ||
7 | ![]() | 199 | ![]() | — |
8 | ![]() | 180 | ![]() | 1:2 = 79:21 |
9 | ![]() | 99 | ![]() | — |
10 | ![]() | 94.1 | ![]() | 1:2 = 79:21 |
Table 3 Synthesis of carboxylic acids using various ether substrates.
Entry | Substrate | Yield a (mol%) | Product | Yield distribution |
---|---|---|---|---|
1 | ![]() | 199 | ![]() | — |
2 | ![]() | 59.4 | ![]() | — |
3 | ![]() | 92.7 | ![]() | 1:2 = 62:38 |
4 | ![]() | 99 | ![]() | — |
5 | ![]() | 56.8 | ![]() | — |
6 | ![]() | 18 | ![]() | 1:2 = 67:33 |
55 | ![]() | 1:2 = 60:40 | ||
7 | ![]() | 199 | ![]() | — |
8 | ![]() | 180 | ![]() | 1:2 = 79:21 |
9 | ![]() | 99 | ![]() | — |
10 | ![]() | 94.1 | ![]() | 1:2 = 79:21 |
Fig. 3. Time course study of the reaction. Reaction conditions: 90 μmol Rh catalyst (based on the metal), 1 mmol I2, 1 mmol THF, 3 mL AcOH, 2 mL H2O, 3 MPa H2, 3 MPa CO, 170 °C. THF: tetrahydrofuran; ADA: adipic acid; VA: valeric acid; 2-MA: 2-methylbutyric acid.
Fig. 4. Mechanistic study. Reaction conditions: (a) 90 μmol Rh catalyst, 1 mmol THF, 2 mmol HI, 3 mL AcOH, 2 mL H2O, 3 MPa CO, 170 °C, 10 h. (b) 2 mmol THF, 4 mmol HI, 2 mL AcOH, 3 MPa H2, 100 °C, 3 h. (c) 50 μmol Rh catalyst, 0.3 mmol 4-iodo-1-butanol, 0.6 mmol I2, 5 mL AcOH, 3 MPa H2, 170 °C, 2 h. (d) 90 μmol Rh catalyst, 1 mmol 1,4-diiodobutane, 3 mL AcOH, 2 mL H2O, 3 MPa CO, 170 °C, 10 h. Source analysis of monocarboxylic acid byproducts. Reaction conditions: (e) 50 μmol Rh catalyst, 2 mmol THF, 2 mmol I2, 5 mL AcOH, 3 MPa H2, 170 °C, 2 h. (f) 50 μmol Rh catalyst, 2 mmol 1-butylene, 2 mmol I2, 5 mL AcOH, 3 MPa H2, 170 °C, 2 h. (g) 90 μmol Rh catalyst, 1 mmol 1-iodobutane, 3 mL AcOH, 2 mL H2O, 3 MPa CO, 170 °C, 10 h. (h) 90 μmol Rh catalyst, 1 mmol 2-iodobutane, 3 mL AcOH, 2 mL H2O, 3 MPa CO, 170 °C, 10 h.
Fig. 5. Source analysis of monoiodide intermediate. Reaction conditions: (a) 50 μmol Rh catalyst, 2 mmol ethylene glycol, 1.5 mmol I2, 5 mL AcOH, 3 MPa H2, 170 °C, 2 h. (b) 50 μmol Rh catalyst, 1 mmol 1,3-butanediol, 1 mmol I2, 5 mL AcOH, 3 MPa H2, 170 °C, 4 h.
|
[1] | Hongen Cao, Boran Zhu, Yufan Yang, Lin Xu, Lei Yu, Qing Xu. Recent advances on controllable and selective catalytic oxidation of cyclohexene [J]. Chinese Journal of Catalysis, 2018, 39(5): 899-907. |
[2] | LIANG Zhenhai*;SUN Hongyan;CUI Yuqing. Catalytic Oxidation of Cyclohexanol on the Ti/Ni/NiO Electrode [J]. Chinese Journal of Catalysis, 2009, 30(3): 254-258. |
[3] | YAN Ning, ZHAO Chen, GAN Weijia, KOU Yuan*. Polyols: A New Generation of Energy Platform [J]. Chinese Journal of Catalysis, 2006, 27(12): 1159-1163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||