Chinese Journal of Catalysis ›› 2025, Vol. 74: 394-410.DOI: 10.1016/S1872-2067(25)64727-9
• Articles • Previous Articles Next Articles
Yang Chena, Yu Tangb, Leiyun Hana, Jiayan Liua, Yingjie Huac, Xudong Zhaoa, Xiaoyang Liua,c,*()
Received:
2024-12-09
Accepted:
2025-04-11
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: Supported by:
Yang Chen, Yu Tang, Leiyun Han, Jiayan Liu, Yingjie Hua, Xudong Zhao, Xiaoyang Liu. Dual-shell hollow nanospheres NiCo2S4@CoS2/MoS2: Enhancing catalytic activity for oxygen evolution reaction and achieving water splitting via the unique synergistic effects of mechanisms of adsorption-desorption and lattice oxygen oxidation[J]. Chinese Journal of Catalysis, 2025, 74: 394-410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64727-9
Fig. 2. (a) XRD patterns of CoNi-G SSs (A) and CoNi-G SSs@ZIF-67 YSSs (B). (b) XRD patterns of NiCo2S4@CoS2/MoS2 DSHSs (A), NiCo2S4@CoS2 DSHSs (B), and NiCo2S4 YSSs (C).
Fig. 5. (a) The XPS patterns of S-NiCoMo-2. High-resolution XPS spectra of Co 2p (b), Ni 2p (c); Mo 3d (d), and S 2p (e) of S-NiCoMo-2. (f) N2 adsorption-desorption isotherm measurements.
Fig. 6. Polarization curves (a), histograms of overpotentials at different current densities (b), and corresponding Tafel slopes (c) of S-NiCoMo-2, S-NiCoMo-4, S-NiCoMo-0, and NiCo2S4 YSSs towards HER. Polarization curves (d), histograms of overpotentials at different current densities (e) and corresponding Tafel slopes (f) of S-NiCoMo-2, S-NiCoMo-4, S-NiCoMo-0, and NiCo2S4 YSSs towards OER. (g, h) Cdl values of S-NiCoMo-2, S-NiCoMo-4, S-NiCoMo-0, and NiCo2S4 YSSs towards HER and OER were obtained from current density versus scan rates. (i) Nyquist plots and equivalent circuit for S-NiCoMo-2, S-NiCoMo-4, S-NiCoMo-0, and NiCo2S4 YSSs.
Fig. 7. (a) OER polarization curves of S-NiCoMo-4 and S-NiCoMo-2 in 1 mol L-1 KOH and 1 mol L-1 TMAOH, respectively. In situ Raman spectra of S-NiCoMo-4 (b) and S-CoMo-4 (c) during the applied potential range from OCP to 1.7 V vs. RHE. (d, e) show the DEMS measurements of the 32O2, 34O2, and 36O2 signals from the reaction products of 18O-labeled S-NiCoMo-4 and S-CoMo-4, respectively. (f) in situ Raman spectroscopy of HER on S-NiCoMo-4 at different potentials immediately after OER tests. (g) mechanism diagram of synergistic catalysis under AEM and LOM pathways.
Fig. 8. (a) Chronopotentiometry curves recorded at 10 mA cm-2 of S-NiCoMo-2 towards HER and S-NiCoMo-4 towards OER in 1.0 mol L-1 KOH solution. (b) Polarization curves at 10 mA cm-2 of S-NiCoMo-4||S-NiCoMo-2 and Pt/C||RuO2 couples towards overall water electrolysis. (c) Experimental and theoretical values of gas production for S-NiCoMo-4||S-NiCoMo-2. Electrolyte 1 mol L-1 KOH. (d) a drainage device fabricated using an H-type electrolytic cell. (e) Chronopotentiometry curves at 10 mA cm-2 of S-NiCoMo-2||S-NiCoMo-4 and Pt/C||RuO2 couples towards overall water electrolysis. (f) Comparison of the water electrolysis voltage obtained at a current density of 10 mA cm-2 from previous research and that achieved using our NiCo2S4@CoS2/MoS2 DSHSs catalyst in an alkaline medium. Optical image of the AEM water splitting device (g) and schematic diagram (h). (i) Stability testing of the S-NiCoMo-4|| S-NiCoMo-2 electrode pairs in EWS using the AEM water splitting device (constant current charging, current density = 0.5 A cm-2) in 1 mol L-1 KOH.
Fig. 9. (a) DFT calculated PDOS of isolated (002) MoS2 nanoparticles, (112) CoS2 surface and CoS2/MoS2 heterointerface. (b) Charge density difference at the CoS2/MoS2 heterointerface. (c) Band diagrams of semiconductor MoS2 and metallic CoS2 before and after the formation of Mott-Schottky interactions. (d) Schematic of the CoS2/MoS2 heterointerface illustrating electron transfer at the heterojunction.
Fig. 10. (a) Optimized crystal structures of (002) MoS2 nanoparticle, (112) CoS2 and CoS2/MoS2 heterointerface. (b-d) Gibbs free energy diagrams for HER at different H adsorption sites on the surfaces of MoS2, CoS2, and CoS2/MoS2, respectively. Insets in (b-d) represent the considered H adsorption sites on MoS2, CoS2, and CoS2/MoS2, respectively.
Fig. 11. (a) Water adsorption sites for MoS2, CoS2, and CoS2/MoS2. (b) Water adsorption energy on the MoS2, CoS2, and CoS2/MoS2 systems (Adsorption sites: Mo-top (MoS2); Mo-edge (MoS2); Co (CoS2); Co (CoS2/MoS2); and Mo (CoS2/MoS2)). Four proton transfer mechanisms of OER on the Co binding site on the surface of CoS2 under alkaline conditions (c) and the corresponding Gibbs free energy diagrams (e) for OER. Four proton transfer mechanisms of the proposed OER on the surface Co binding site of CoS2/MoS2 under alkaline conditions (d) and the corresponding Gibbs free energy diagrams for OER (f).
|
[1] | Pengxiang Zhang, Jiawen Wang, Tianyu Yang, Ruizhe Wang, Ruofan Shen, Zhikun Peng, Yanyan Liu, Xianli Wu, Jianchun Jiang, Baojun Li. Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 48-83. |
[2] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
[3] | Yanru Zhu, Zhijun Zhang, Jian Zhang, Shuangjiang Jiang, Zhe An, Hongyan Song, Xin Shu, Wei Xi, Lirong Zheng, Jing He. Photo-thermal cooperation for the conversion of CO2 and CH4 with H2O to C2 oxygenates over SrTiOx supported CuCo [J]. Chinese Journal of Catalysis, 2024, 61(6): 164-178. |
[4] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[5] | Ya-Jie Liu, Lin Geng, Yao Kang, Wei-Hui Fang, Jian Zhang. Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity [J]. Chinese Journal of Catalysis, 2021, 42(8): 1332-1337. |
[6] | Leiming Tao, Penghu Guo, Weiling Zhu, Tianle Li, Xiantai Zhou, Yongqing Fu, Changlin Yu, Hongbing Ji. Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2020, 41(12): 1855-1863. |
[7] | Jintang Li, Guiqing Du, Xian Cheng, Pingjing Feng, Xuetao Luo. CoNiP/NC polyhedrons derived from cobalt-based zeolitic imidazolate frameworks as an active electrocatalyst for oxygen evolution [J]. Chinese Journal of Catalysis, 2018, 39(5): 982-987. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||