Chinese Journal of Catalysis ›› 2025, Vol. 76: 50-64.DOI: 10.1016/S1872-2067(25)64754-1
• Articles • Previous Articles Next Articles
Xiangyang Zhenga, Jinwang Wua, Haifeng Shia,b,*()
Received:
2025-03-24
Accepted:
2025-04-29
Online:
2025-09-18
Published:
2025-09-10
Contact:
Haifeng Shi
Supported by:
Xiangyang Zheng, Jinwang Wu, Haifeng Shi. Double-vacancy-induced polarization and intensified built-in electric field in S-Scheme heterojunction for removal of antibiotics and Cr (VI)[J]. Chinese Journal of Catalysis, 2025, 76: 50-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64754-1
Fig. 1. (a) Schematic of the procedure for the preparation of VMo-BMO/Ov-BOB samples. XRD patterns (b) and FTIR spectra (c) of Ov-BOB, VMo-BMO, and VMo-BMO/Ov-BOB-X (X = 0.2, 0.3, 0.4).
Fig. 2. SEM images of Ov-BOB (a), VMo-BMO (b), and VMo-BMO/Ov-BOB-0.3 (c). TEM (d) and HRTEM (e) images of VMo-BMO/Ov-BOB-0.3. In-situ Bi 4f (f), O 1s (g), Br 3d (h), and Mo 3d (i) XPS spectra of Ov-BOB, VMo-BMO, and VMo-BMO/Ov-BOB-0.3.
Fig. 3. (a) UV-vis DRS of Ov-BOB, VMo-BMO, and VMo-BMO/Ov-BOB-X (X = 0.2, 0.3, 0.4). (b) Tauc’s plots of Ov-BOB and VMo-BMO. (c) UV-vis DRS of VMo-BMO and BMO. (d) VB-XPS spectra of Ov-BOB and VMo-BMO.
Fig. 4. (a) EPR signals of VMo-BMO/Ov-BOB-0.3 upon visible light illumination and maintaining at ambient air with different time. (b) UV-vis DRS spectra of VMo-BMO/Ov-BOB-0.3 under dark and visible light irradiation conditions. (c) Schematic of the Ov looping on VMo-BMO/Ov-BOB-0.3. (d) Digital photographs of as-prepared samples in the initial and colored states.
Fig. 5. (a) The photocatalytic performance of VMo-BMO, Ov-BOB, BMO/Ov-BOB-0.3, VMo-BMO/Ov-BOB-0.3(MM), and VMo-BMO/Ov-BOB-X (X = 0.2, 0.3, 0.4) in TC degradation. (b) The photocatalytic performance of VMo-BMO, Ov-BOB, BMO/Ov-BOB-0.3, VMo-BMO/Ov-BOB-0.3(MM), and VMo-BMO/Ov-BOB-X (X = 0.2, 0.3, 0.4) in Cr (VI) reduction. (c) The simultaneous removal of TC and Cr (VI) over VMo-BMO/Ov-BOB-0.3. The corresponding reaction kinetics constants of TC degradation (d), Cr (VI) reduction (e), and the simultaneous removal of TC and Cr (VI) (f). Conditions: [TC] = 15 mg·L-1, [Cr (VI)] = 10 mg·L-1, [catalyst] = 0.03 g, [pH] = 7.
Fig. 6. The photocatalytic performance of simultaneous removal of TC and Cr (VI) under solar light irradiation over VMo-BMO/Ov-BOB-0.3 (a) and the corresponding reaction kinetics constants (b). (c) Recycling performance of VMo-BMO/Ov-BOB-0.3. (d) XRD patterns for fresh and used VMo-BMO/Ov-BOB-0.3. (e,f) Free radical trap experiments of VMo-BMO/Ov-BOB-0.3. EPR spectra of DMPO-·O2− (g) and DMPO-·OH (h) of VMo-BMO/Ov-BOB-0.3. Conditions: [TC] = 15 mg·L-1, [Cr (Ⅵ)] = 10 mg·L-1, [EDTA] = 1.0 mmol L-1, [IPA] = 1.0 mmol L-1, [BQ] = 0.33 mmol L-1, [Catalyst] = 0.03 g, pH = 7.
Fig. 7. (a) Proposed pathways of TC degradation over VMo-BMO/Ov-BOB-0.3. Toxicity assessment of TC and its intermediate substance: acute toxicity (b), developmental toxicity (c), and mutagenicity (d). (e) Digital photograph of mung bean seed cultured in different solutions.
Sample | τ1 (ns) | A1 (%) | τ2 (ns) | A2 (%) | τavg (ns) |
---|---|---|---|---|---|
VMo-BMO | 2.46 | 0.68 | 2.67 | 0.32 | 2.53 |
Ov-BOB | 1.93 | 0.51 | 1.59 | 0.49 | 1.65 |
BMO/Ov-BOB-0.3 | 2.03 | 0.44 | 2.64 | 0.56 | 2.41 |
VMo-BMO/Ov-BOB-0.3 (dark) | 2.71 | 0.64 | 3.04 | 0.36 | 2.84 |
VMo-BMO/Ov-BOB-0.3 (light) | 2.75 | 0.32 | 3.12 | 0.78 | 3.02 |
Table 1 The τavg of the samples were obtained by double exponential fitting.
Sample | τ1 (ns) | A1 (%) | τ2 (ns) | A2 (%) | τavg (ns) |
---|---|---|---|---|---|
VMo-BMO | 2.46 | 0.68 | 2.67 | 0.32 | 2.53 |
Ov-BOB | 1.93 | 0.51 | 1.59 | 0.49 | 1.65 |
BMO/Ov-BOB-0.3 | 2.03 | 0.44 | 2.64 | 0.56 | 2.41 |
VMo-BMO/Ov-BOB-0.3 (dark) | 2.71 | 0.64 | 3.04 | 0.36 | 2.84 |
VMo-BMO/Ov-BOB-0.3 (light) | 2.75 | 0.32 | 3.12 | 0.78 | 3.02 |
Fig. 8. PL spectra (a), TR-PL decay spectra (b), EIS (c), and transient photocurrent response spectra (d) of the Ov-BOB, VMo-BMO, BMO/Ov-BOB-0.3, and VMo-BMO/Ov-BOB-0.3 samples.
Fig. 9. The crystal structures of Ov-BOB (a), VMo-BMO (b), and VMo-BMO/Ov-BOB heterojunction (c). Work function of VMo-BMO (d), BMO (e), Ov-BOB (f), and BOB (g). Modulation of Fermi level between VMo-BMO, Ov-BOB, BMO and BOB. The band structures of VMo-BMO and Ov-BOB: before contact (h), after contact (i), and the photoinduced carriers transfer mechanism (j). (k) Modulation of Fermi level between VMo-BMO, Ov-BOB, BMO and BOB.
Fig. 10. Diagram of the electrostatic potential of Ov-BOB (a), VMo-BMO (b), VMo-BMO/Ov-BOB-0.3 (c), and the value of dipole moment fitted by the electrostatic potential diagram (d). (e) The possible simultaneous removal mechanism of Cr (VI) and TC over the VMo-BMO/Ov-BOB-0.3 composite.
|
[1] | Bo Feng, Danning Feng, Yan Pei, Baoning Zong, Minghua Qiao, Wei Li. Cu single atoms on defective carbon nitride for photocatalytic oxidation of methane to methanol with selectivity over 92% [J]. Chinese Journal of Catalysis, 2025, 76(9): 96-107. |
[2] | Wei Zhong, Aiyun Meng, Xudong Cai, Yiyao Gan, Jingtao Wang, Yaorong Su. Enhancing photocatalytic H2 evolution by weakening S-Had bonds via Co-induced asymmetric electron distribution in NiCoS cocatalysts [J]. Chinese Journal of Catalysis, 2025, 76(9): 108-119. |
[3] | Bicheng Ji, Xicheng Li, Shuai Gao, Zeping Qin, Changzheng Wang, Qiang Wang, Chong-Chen Wang. Polarization-enhanced piezo-photocatalysis over hollow-sphere Bi4Ti3O12: Structure-property relationship and degradation mechanism [J]. Chinese Journal of Catalysis, 2025, 76(9): 133-145. |
[4] | Shijie Li, Rui Li, Kexin Dong, Yanping Liu, Xin Yu, Wenyao Li, Tong Liu, Zaiwang Zhao, Mingyi Zhang, Bin Zhang, Xiaobo Chen. Self-floating Bi4O5Br2/P-doped C3N4/carbon fiber cloth with S-scheme heterostructure for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 76(9): 37-49. |
[5] | Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei. Few-layer oxygen vacant Bi2O2(OH)NO3 for dual-channel piezocatalytic H2O2 production from H2O and air [J]. Chinese Journal of Catalysis, 2025, 75(8): 105-114. |
[6] | Li Zheng, Zeng Ying, Dong Yuanyuan, Lv Hongjin, Yang Guo-Yu. Metal/H+ sites modulation in the decatungstate+Pd/C catalytic system for photocatalytic generation of furfuryl ethyl ether [J]. Chinese Journal of Catalysis, 2025, 75(8): 137-146. |
[7] | Xiong Qi, Shi Quanquan, Wang Binli, Baiker Alfons, Li Gao. Facet-induced reduction directed AgBr/Ag0/TiO2{100} Z-scheme heterojunction for tetracycline removal [J]. Chinese Journal of Catalysis, 2025, 75(8): 164-179. |
[8] | Ai Yating, A. C. Carabineiro Sónia, Xiong Xianqiang, Zhu Huayue, Wang Qi, Weng Bo, Yang Min-Quan. Systematic assessment of emerging contaminants elimination using an S-scheme Mn0.5Cd0.5S/In2S3 photocatalyst: Degradation pathways, toxicity evaluation and mechanistic analysis [J]. Chinese Journal of Catalysis, 2025, 75(8): 147-163. |
[9] | Yunchao Zhang, Jinkang Pan, Xiang Ni, Feiqi Mo, Yuanguo Xu, Pengyu Dong. Revealing the dynamics of charge carriers in organic/inorganic hybrid FS-COF/WO3 S-scheme heterojunction for boosted photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 250-263. |
[10] | Chongbei Wu, Feihong Chu, Yongchao Hao, Xuan Li, Xiaoyue Jia, Yifan Sun, Jiaxuan Gu, Pengfei Jia, Aobing Wang, Jizhou Jiang. Dual O2 reduction centers of COFs boosting H2O2 photosynthesis [J]. Chinese Journal of Catalysis, 2025, 74(7): 329-340. |
[11] | Zihao Zhang, Jiaming Zhang, Haifeng Wang, Meng Liu, Yao Xu, Kaiwei Liu, Boyang Zhang, Ke Shi, Jifang Zhang, Guijun Ma. Facet-oriented surface modification for enhancing photocatalytic hydrogen production on Sm2Ti2O5S2 nanosheets [J]. Chinese Journal of Catalysis, 2025, 74(7): 341-351. |
[12] | Xuemeng Sun, Jianan Liu, Qi Li, Cheng Wang, Baojiang Jiang. Schottky junction coupling with metal size effect for the enhancement of photocatalytic nitrate reduction [J]. Chinese Journal of Catalysis, 2025, 73(6): 358-367. |
[13] | Xinyue Li, Haili Lin, Xuemei Jia, Shifu Chen, Jing Cao. An S-scheme heterojunction engineered with spatially separated dual active groups for simultaneously photocatalytic CO2 reduction and ciprofloxacin oxidation [J]. Chinese Journal of Catalysis, 2025, 73(6): 205-221. |
[14] | Tengfei Cao, Quanlong Xu, Jun Zhang, Shenggao Wang, Tingmin Di, Quanrong Deng. S-scheme g-C3N4/BiOBr heterojunction for efficient photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 72(5): 118-129. |
[15] | Shiya Yue, Rong Li, Zhengrong Wei, Yun Gao, Karen Wilson, Xuxing Chen. All solid-solution S-scheme heterojunction with adjustable internal electric field for highly efficient photocatalytic activity [J]. Chinese Journal of Catalysis, 2025, 71(4): 353-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||