Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (4): 561-573.DOI: 10.1016/S1872-2067(19)63346-2
• Special Column for the Youth Innovation Promotion Association, Chinese Academy of Sciences • Previous Articles Next Articles
Xiaoli Yanga,b,c, Xiong Sua, De Chenc, Tao Zhanga,b, Yanqiang Huanga
Received:
2019-09-17
Revised:
2019-10-17
Online:
2020-04-18
Published:
2019-12-12
Supported by:
CLC Number:
Xiaoli Yang, Xiong Su, De Chen, Tao Zhang, Yanqiang Huang. Direct conversion of syngas to aromatics: A review of recent studies[J]. Chinese Journal of Catalysis, 2020, 41(4): 561-573.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63346-2
[1] P. Courty, J. F. Gruson, Oil Gas Sci. Technol., 2001, 56, 515-524. [2] A. Demirbas, Energy Sources, Part A, 2007, 29, 677-684. [3] C. C. Yu, S. K. Shen, Pet. Sci., 2008, 5, 67-72. [4] P. Gao, S. G. Li, X. N. Bu, S. S. Dang, Z. Y. Liu, H. Wang, L. S. Zhong, M. H. Qiu, C. G. Yang, J. Cai, W. Wei, Y. H. Sun, Nat. Chem., 2017, 9, 1019-1024. [5] S. Asthana, C. Samanta, A. Bhaumik, B. Banerjee, R. K. Voolapalli, B. Saha, J. Catal., 2016, 334, 89-101. [6] C. Baltes, S. Vukojevic, F. Schuth, J. Catal., 2008, 258, 334-344. [7] X. Q. Wu, S. T. Xu, W. N. Zhang, J. D. Huang, J. Z. Li, B. W. Yu, Y. X. Wei, Z. M. Liu, Angew. Chem. Int. Ed., 2017, 56, 9039-9043. [8] G. Leendert Bezemer, J. H. Bitter, H. P. C. E. Kuipers, H. Oosterbeek, J. E. Holewijn, X. D. Xu, F. Kapteijn, A. Jos van Dillen, K. P. de Jong, J. Am. Chem. Soc., 2006, 128, 3956-3964. [9] J. C. Kang, S. L. Zhang, Q. H. Zhang, Y. Wang, Angew. Chem. Int. Ed., 2009, 48, 2565-2568. [10] K. Cheng, J. C. Kang, S. W. Huang, Z. Y. You, Q. H. Zhang, J. S. Ding, W. Q. Hua, Y. C. Lou, W. P. Deng, Y. Wang, ACS Catal., 2012, 2, 441-449. [11] K. Cheng, B. Gu, X. L. Liu, J. C. Kang, Q. H. Zhang, Y. Wang, Angew. Chem. Int. Ed., 2016, 55, 4725-4728. [12] Y. Q. Song, X. X. Zhu, S. J. Xie, Q. X. Wang, L. Y. Xu, Catal. Lett., 2004, 97, 31-36. [13] X. X. Guan, N. Li, G. J. Wu, J. X. Chen, F. X. Zhang, N. J. Guan, J. Mol. Catal. A, 2006, 248, 220-225. [14] M. Fischer, X. Jiang, Fuel, 2016, 183, 386-395. [15] N. Viswanadham, A. R. Pradhan, N. Ray, S. C. Vishnoi, U. Shanker, T. S. R. Prasada Rao, Appl. Catal. A, 1996, 137, 225-233. [16] P. C. Lai, C. Y. Hsieh, C. H. Chen, Y. C. Lin, Catalysts, 2017, 7, 259. [17] S. Kim, G. Park, S. K. Kim, Y. T. Kim, K. W. Jun, G. Kwak, Appl. Catal. B, 2018, 220, 191-201. [18] Y. K. Zhang, Y. X. Qu, D. L. Wang, X. C. Zeng, J. D. Wang, Ind. Eng. Chem. Res., 2017, 56, 12508-12519. [19] F. Denardin, O. W. Perez-Lopez, Fuel, 2019, 236, 1293-1300. [20] X. G. Guo, G. Z. Fang, G. Li, H. Ma, H. J. Fan, L. Yu, C. Ma, X. Wu, D. H. Deng, M. M. Wei, D. L. Tan, R. Si, S. Zhang, J. Q. Li, L. T. Sun, Z. C. Tang, X. L. Pan, X. H. Bao, Science, 2014, 344, 616-619. [21] L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal. Lett., 1993, 21, 35-41. [22] D. Wang, J. H. Lunsford, M. P. Rosynek, J. Catal., 1997, 169, 347-358. [23] S. Ma, X. Guo, L. Zhao, S. Scott, X. Bao, J. Energy Chem., 2013, 22, 1-20. [24] T. Yashima, S. Ejiri, K. Kato, M. M. Ishaq, M. Tanigawa, T. Komatsu, S. Namba, Stud. Surf. Sci. Catal., 1996, 100, 447-454. [25] T. Komatsu, M. Mesuda, T. Yashima, Appl. Catal. A, 2000, 194-195, 333-339. [26] J. Zhang, W. Qian, C. Kong, F. Wei, ACS Catal., 2015, 5, 2982-2988. [27] D. Freeman, R. P. K. Wells, G. J. Hutchings, J. Catal., 2002, 205, 358-365. [28] A. Kecskeméti, R. Barthos, F. Solymosi, J. Catal., 2008, 258, 111-120. [29] J. W. Jun, Z. Hasan, C. U. Kim, S. Y. Jeong, S. H. Jhung, J. Nanosci. Nanotechnol., 2016, 16, 4377-4385. [30] C. D. Chang, W. H. Lang, A. J. Silvestri, J. Catal., 1979, 56, 268-273. [31] S. Sartipi, M. Makkee, F. Kapteijn, J. Gascon, Catal. Sci. Technol., 2014, 4, 893-907. [32] M. J. Valero-Romero, S. Sartipi, X. Sun, J. Rodriguez-Mirasol, T. Cordero, F. Kapteijn, J. Gascon, Catal. Sci. Technol., 2016, 6, 2633-2646. [33] F. Jiao, J. J. Li, X. L. Pan, J. P. Xiao, H. B. Li, H. Ma, M. M. Wei, Y. Pan, Z. Y. Zhou, M. R. Li, S. Miao, J. Li, Y. F. Zhu, D. Xiao, T. He, J. H. Yang, F. Qi, Q. Fu, X. H. Bao, Science, 2016, 351, 1065-1068. [34] K. Fujimoto, Y. Kudo, H. Tominaga, J. Catal., 1984, 87, 136-143. [35] N. Guan, Y. Liu, M. Zhang, Catal. Today, 1996, 30, 207-213. [36] L. Jiao,[MS Dissertation], East China University of Science and Technology, Shanghai, 2017. [37] A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev., 2007, 107, 1692-1744. [38] B. Chen, D. Wang, X. Duan, W. Liu, Y. Li, G. Qian, W. Yuan, A. Holmen, X. Zhou, D. Chen, ACS Catal., 2018, 8, 2709-2714. [39] M. E. Dry, J. Chem. Technol. Biotechnol., 2002, 77, 43-50. [40] B. Chen, X. Zhang, W. Chen, D. Wang, N. Song, G. Qian, X. Duan, J. Yang, D. Chen, W. Yuan, Ind. Eng. Chem. Res., 2018, 57, 11554-11560. [41] A. Alayat, E. Echeverria, D. N. Mcllroy, A. G. McDonald, Fuel Process. Technol., 2018, 177, 89-100. [42] M. Nimz, G. Lietz, J. Völter, K. Lazar, L. Guczi, Catal. Lett., 1988, 1, 93-98. [43] C. Wang, X. Y. Sun, J. Xu, G. D. Qi, W. Y. Wang, X. L. Zhao, W. Z. Li, Q. Wang, F. Deng, J. Catal., 2017, 354, 138-151. [44] Y. Xu, J. Liu, G. Ma, J. Wang, J. Lin, H. Wang, C. Zhang, M. Ding, Fuel, 2018, 228, 1-9. [45] G. Calleja, A. De Lucas, R. Van Grieken, Appl. Catal., 1991, 68, 11-29. [46] Q. Yan, Y. Lu, C. Wan, J. Han, J. Rodriguez, J. Yin, F. Yu, Energy Fuels, 2014, 28, 2027-2034. [47] Y. W. Lu, J. Hu, J. Han, F. Yu, J. Energy Inst., 2016, 89, 782-792. [48] S. Liu, A. C. Gujar, P. Thomas, H. Toghiani, M. G. White, Appl. Catal. A, 2009, 357, 18-25. [49] Y. Wang, J. Energy Chem., 2016, 25, 169-170. [50] J. Su, D. Wang, Y. Wang, H. Zhou, C. Liu, S. Liu, C. Wang, W. Yang, Z. Xie, M. He, ChemCatChem, 2018, 10, 1536-1541. [51] K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Chem, 2017, 3, 334-347. [52] J. L. Weber, I. Dugulan, P. E. de Jongh, K. P. de Jong, ChemCatChem, 2018, 10, 1107-1112. [53] X. Yang, X. Su, B. Liang, Y. Zhang, H. Duan, J. Ma, Y. Huang, T. Zhang, Catal. Sci. Technol., 2018, 8, 4338-4348. [54] Z. Chen, Y. Ni, Y. Zhi, F. Wen, Z. Zhou, Y. Wei, W. Zhu, Z. Liu, Angew. Chem., 2018, 130, 12729-12733. [55] J. Yang, X. Pan, F. Jiao, J. Li, X. Bao, Chem. Commun., 2017, 53, 11146-11149. [56] Z. Li, Y. Qu, J. Wang, H. Liu, M. Li, S. Miao, C. Li, Joule, 2018, 3, 124-135. [57] S. S. Arora, D. L. S. N. Ieskens, A. Malek, A. Bhan, Nat. Catal., 2018, 1, 666-672. [58] F. Simard, U. A. Sedran, J. Sepulveda, N. S. Figoli, H. I. de Lasa, Appl. Catal. A, 1995, 125, 81-98. [59] R. A. Dagle, J. A. Lizarazo-Adarme, V. L. Dagle, M. J. Gray, J. F. White, D. L. King, D. R. Palo, Fuel Process. Technol., 2014, 123, 65-74. [60] P. Mohanty, K. K. Pant, J. Parikh, D. K. Sharma, Fuel Process. Technol., 2011, 92, 600-608. [61] Y. Ni, Z. Chen, Y. Fu, Y. Liu, W. Zhu, Z. Liu, Nat. Commun., 2018, 9, 3457. [62] Y. Ni, Y. Liu, Z. Chen, M. Yang, H. Liu, Y. He, Y. Fu, W. Zhu, Z. Liu, ACS Catal., 2019, 9, 1026-1032. [63] N. Li, F. Jiao, X. Pan, Y. Ding, J. Feng, X. Bao, ACS Catal., 2019, 9, 960-966. [64] Z. Huang, S. Wang, F. Qin, L. Huang, Y. Yue, W. Hua, M. Qiao, H. He, W. Shen, H. Xu, ChemCatChem, 2018, 10, 4519-4524. [65] W. Zhou, S. Shi, Y. Wang, L. Zhang, Y. Wang, G. Zhang, X. Min, K. Cheng, Q. Zhang, J. Kang, ChemCatChem, 2011, 3, 334-347. [66] J. Yang, K. Gong, D. Miao, F. Jiao, X. Pan, X. Meng, F. Xiao, X. Bao, J. Energy Chem., 2019, 35, 44-48. [67] B. Li, B. Sun, X. Qian, W. Li, Z. Wu, Z. Sun, M. Qiao, M. Duke, D. Zhao, J. Am. Chem. Soc., 2013, 135, 1181-1184. [68] K. Van der Borght, R. Batchu, V. V. Galvita, K. Alexopoulos, M. F. Reyniers, J. W. Thybaut, G. B. Marin, Angew. Chem. Int. Ed., 2016, 55, 12817-12821. [69] Q. Zhang, Y. Tan, C. Yang, H. Xie, Y. Han, J. Ind. Eng. Chem., 2013, 19, 975-980. [70] P. Zhang, L. Tan, G. Yang, N. Tsubaki, Chem. Sci., 2017, 8, 7941-7946. [71] J. Li, Y. Tan, Q. Zhang, Y. Han, Fuel, 2010, 89, 3510-3516. [72] J. M. Arandes, J. Erena, A. G. Gayubo, J. Bilbao, H. I. De Lasa, Chem. Eng. Commun., 1999, 174, 1-19. [73] Z. Li, J. Wang, Y. Qu, H. Liu, C. Tang, S. Miao, Z. Feng, H. An, C. Li, ACS Catal., 2017, 7, 8544-8548. [74] X. Liu, W. Zhou, Y. Yang, K. Cheng, J. Kang, L. Zhang, G. Zhang, X. Min, Q. Zhang, Y. Wang, Chem. Sci., 2018, 9, 4708-4718. [75] D. L. S. Nieskens, A. Ciftci, P. E. Groenendijk, M. F. Wielemaker, A. Malek, Ind. Eng. Chem. Res., 2017, 56, 2722-2732. [76] X. Yang, T. Sun, J. Ma, X. Su, R. Wang, Y. Zhang, H. Duan, Y. Huang, T. Zhang, J. Energy Chem., 2019, 35, 60-65. [77] D. Wang, B. Chen, X. Duan, D. Chen, X. Zhou, J. Energy Chem., 2016, 25, 911-916. [78] T. Yang, L. Cheng, N. Li, D. Liu, Ind. Eng. Chem. Res., 2017, 56, 11763-11772. [79] Z. Yang, X. Pan, J. Wang, X. Bao, Catal. Today, 2012, 186, 121-127. [80] L. Cheng, C. Meng, T. Yang, N. Li, D. Liu, Energy Fuels, 2018, 32, 9756-9762. [81] D. Wang, H. Zeng, N. Guan, Chin. J. Catal., 2002, 23, 333-335. [82] G. Bäurle, K. Guse, M. Lohrengel, H. Papp, Stud. Surf. Sci. Catal., 1993, 75, 2789-2792. [83] J. Plana-Pallejà, S. Abelló, C. Berrueco, D. Montané, Appl. Catal. A, 2016, 515, 126-135. [84] B. Zhao, P. Zhai, P. Wang, J. Li, T. Li, M. Peng, M. Zhao, G. Hu, Y. Yang, Y. W. Li, Q. Zhang, W. Fan, D. Ma, Chem, 2017, 3, 323-333. [85] Y. Xu, D. Liu, X. Liu, Appl. Catal. A, 2018, 552, 168-183. [86] Y. Xu, J. Liu, G. Ma, J. Wang, Q. Wang, J. Lin, H. Wang, C. Zhang, M. Ding, Mol. Catal., 2018, 454, 104-113. [87] T. Inui, T. Kuroda, T. Takeguchi, A. Miyamoto, Appl. Catal., 1990, 61, 219-233. [88] A. Corsaro, T. Wiltowski, D. Juchelková, S. Honus, Pet. Sci. Technol., 2014, 32, 2497-2505. [89] R. Wijayapala, F. Yu, C. U. Pittman Jr, T. E. Mlsna, Appl. Catal. A, 2014, 480, 93-99. [90] R. L. Varma, N. N. Bakhshi, J. F. Mathews, S. H. Ng, Ind. Eng. Chem. Res., 1987, 26, 183-188. [91] J. Zhang, X. Sun, J. Qiao, T. Tuo, G. Fu, X. Min, Clean Coal Technol, 2013, 19, 60-62. [92] X. Q. Shen, J. C. Kang, W. Niu, M. H. Wang, Q. H. Zhang, Y. Wang, Catal. Sci. Technol., 2017, 7, 3598-3612. [93] P. Zhu, J. Sun, G. Yang, G. Liu, P. Zhang, Y. Yoneyama, N. Tsubaki, Catal. Sci. Technol., 2017, 7, 2695-2699. [94] H. Zhou, S. Liu, J. Su, C. Liu, L. Zhang, W. Jiao, Y. Wang, Ind. Eng. Chem. Res., 2018, 57, 6815-6820. [95] R. Brosius, M. Claeys, Chem, 2017, 3, 202-204. [96] Y. Chen, Y. Xu, D. Cheng, Y. Chen, F. Chen, X. Lu, Y. Huang, S. Ni, J. Appl. Chem. Biotechnol., 2015, 90, 415-422. [97] K. Xiao, Z. Bao, X. Qi, X. Wang, L. Zhong, K. Fang, M. Liu, Y. Sun, Chin. J. Catal., 2013, 34, 116-129. [98] Z. Guo, M. Kang, Y. Tan, Z. Ren, D. Lu, C. Fu, J. Fuel Chem. Technol., 1991, 19, 320-326. [99] F. Jiao, X. Pan, K. Gong, Y. Chen, G. Li, X. Bao, Angew. Chem. Int. Ed., 2018, 57, 4692-4696. [100] J. H. Flores, M. I. P. da Silva, Catal. Lett., 2016, 146, 1505-1516. |
[1] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[2] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[3] | Peigong Liu, Tiejun Lin, Lei Guo, Xiaozhe Liu, Kun Gong, Taizhen Yao, Yunlei An, Liangshu Zhong. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency [J]. Chinese Journal of Catalysis, 2023, 48(5): 150-163. |
[4] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[5] | Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation [J]. Chinese Journal of Catalysis, 2023, 46(3): 125-136. |
[6] | Yu Shang, Yunxuan Ding, Peili Zhang, Mei Wang, Yufei Jia, Yunlong Xu, Yaqing Li, Ke Fan, Licheng Sun. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413. |
[7] | Xiaoqin Han, Jiachang Zuo, Danlu Wen, Youzhu Yuan. Toluene methylation with syngas to para-xylene by bifunctional ZnZrOx-HZSM-5 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 1156-1164. |
[8] | Zhaopeng Liu, Youming Ni, Zhongpan Hu, Yi Fu, Xudong Fang, Qike Jiang, Zhiyang Chen, Wenliang Zhu, Zhongmin Liu. Insights into effects of ZrO2 crystal phase on syngas-to-olefin conversion over ZnO/ZrO2 and SAPO-34 composite catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 877-884. |
[9] | Zhiyang Chen, Youming Ni, Fuli Wen, Ziqiao Zhou, Wenliang Zhu, Zhongmin Liu. The carboxylates formed on oxides promoting the aromatization in syngas conversion over composite catalysts [J]. Chinese Journal of Catalysis, 2021, 42(5): 835-843. |
[10] | Sheng Zhou, Jiayi Qin, Xueru Zhao, Jing Yang. 3D hierarchically macro-/mesoporous graphene frameworks enriched with pyridinic-nitrogen-cobalt active sites as efficient reversible oxygen electrocatalysts for rechargeable zinc-air batteries [J]. Chinese Journal of Catalysis, 2021, 42(4): 571-582. |
[11] | Mengheng Wang, Yaoyao Han, Suhan Liu, Zhiming Liu, Dongli An, Zhiqiang Zhang, Kang Cheng, Qinghong Zhang, Ye Wang. Pore-mouth catalysis boosting the formation of iso-paraffins from syngas over bifunctional catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2197-2205. |
[12] | Yajun He, Xin Chen, Chi Huang, Liuyi Li, Chengkai Yang, Yan Yu. Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas [J]. Chinese Journal of Catalysis, 2021, 42(1): 123-130. |
[13] | Yukai Chen, Yu Wang, Jiaojiao Fang, Baoying Dai, Jiahui Kou, Chunhua Lu, Yuanjin Zhao. Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(1): 184-192. |
[14] | Zheng-Qing Huang, Teng-Hao Li, Bolun Yang, Chun-Ran Chang. Role of surface frustrated Lewis pairs on reduced CeO2(110) in direct conversion of syngas [J]. Chinese Journal of Catalysis, 2020, 41(12): 1906-1915. |
[15] | Xiaoshan Zhang, Ning Rui, Xinyu Jia, Xue Hu, Chang-jun Liu. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation [J]. Chinese Journal of Catalysis, 2019, 40(4): 495-503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||