Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (12): 1906-1915.DOI: 10.1016/S1872-2067(20)63627-0
• Articles • Previous Articles
Zheng-Qing Huang, Teng-Hao Li, Bolun Yang, Chun-Ran Chang
Received:
2020-03-07
Revised:
2020-04-15
Online:
2020-12-18
Published:
2020-08-14
Supported by:
Zheng-Qing Huang, Teng-Hao Li, Bolun Yang, Chun-Ran Chang. Role of surface frustrated Lewis pairs on reduced CeO2(110) in direct conversion of syngas[J]. Chinese Journal of Catalysis, 2020, 41(12): 1906-1915.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63627-0
[1] H. M. Torres Galvis, K. P. de Jong, ACS Catal., 2013, 3, 2130-2149. [2] V. Zacharopoulou, A. A. Lemonidou, Catalysts, 2018, 8, 2. [3] K. Cheng, J. C. Kang, D. L. King, V. Subramanian, C. Zhou, Q. H. Zhang, Y. Wang, Adv. Catal., 2017, 60, 125-208. [4] W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, Chem. Soc. Rev., 2019, 48, 3193-3228. [5] V. V. Ordomsky, Y. Luo, B. Gu, A. Carvalho, P. A. Chernavskii, K. Cheng, A. Y. Khodakov, ACS Catal., 2017, 7, 6445-6452. [6] O. Zhuo, L. Yang, F. Gao, B. Xu, Q. Wu, Y. Fan, Y. Zhang, Y. Jiang, R. Huang, X. Wang, Z. Hu, Chem. Sci., 2019, 10, 6083-6090. [7] H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, Science, 2012, 335, 835-838. [8] L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S. Jin, Q. Shen, H. Wang, Nature, 2016, 538, 84-87. [9] F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science, 2016, 351, 1065-1068. [10] K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, Y. Wang, Angew. Chem. Int. Ed., 2016, 55, 4725-4728. [11] Y. F. Zhu, X. L. Pan, F. Jiao, J. Li, J. H. Yang, M. Z. Ding, Y. Han, Z. Liu, X. H. Bao, ACS Catal., 2017, 7, 2800-2804. [12] F. Jiao, X. Pan, K. Gong, Y. Chen, G. Li, X. Bao, Angew. Chem. Int. Ed., 2018, 57, 4692-4696. [13] X. Liu, W. Zhou, Y. Yang, K. Cheng, J. Kang, L. Zhang, G. Zhang, X. Min, Q. Zhang, Y. Wang, Chem. Sci., 2018, 9, 4708-4718. [14] G. Raveendra, C. M. Li, B. Bin, Y. Cheng, F. H. Meng, Z. Li, Catal. Sci. Technol., 2018, 8, 3527-3538. [15] J. J. Su, D. Wang, Y. D. Wang, H. B. Zhou, C. Liu, S. Liu, C. M. Wang, W. M. Yang, Z. K. Xie, M. Y. He, ChemCatChem, 2018, 10, 1536-1541. [16] N. Li, F. Jiao, X. L. Pan, Y. Ding, J. Y. Feng, X. H. Bao, ACS Catal., 2019, 9, 960-966. [17] P. Zhang, F. Meng, X. Li, L. Yang, P. Ma, Z. Li, Catal. Sci. Technol., 2019, 9, 5577-5581. [18] K. P. de Jong, Science, 2016, 351, 1030-1031. [19] K. Cheng, W. Zhou, J. C. Kang, S. He, S. L. Shi, Q. H. Zhang, Y. Pan, W. Wen, Y. Wang, Chem, 2017, 3, 334-347. [20] J. Yang, X. Pan, F. Jiao, J. Li, X. Bao, Chem. Commun., 2017, 53, 11146-11149. [21] Z. Huang, S. Wang, F. Qin, L. Huang, Y. H. Yue, W. M. Hua, M. H. Qiao, H. Y. He, W. Shen, H. L. Xu, ChemCatChem, 2018, 10, 4519-4524. [22] W. Zhou, J. Kang, K. Cheng, S. He, J. Shi, C. Zhou, Q. Zhang, J. Chen, L. Peng, M. Chen, Y. Wang, Angew. Chem. Int. Ed., 2018, 57, 12012-12016. [23] G. Li, F. Jiao, D. Miao, Y. Wang, X. Pan, T. Yokoi, X. Meng, F.-S. Xiao, A.-N. Parvulescu, U. Müller, X. Bao, J. Energy Chem., 2019, 36, 141-147. [24] N. Li, F. Jiao, X. Pan, Y. Chen, J. Feng, G. Li, X. Bao, Angew. Chem. Int. Ed., 2019, 58, 7400-7404. [25] X. Yang, X. Su, D. Chen, T. Zhang, Y. Huang, Chin. J. Catal., 2020, 41, 561-573. [26] J. J. Gao, C. M. Jia, B. Liu, Catal. Sci. Technol., 2017, 7, 5602-5607. [27] S. S. Dang, P. Gao, Z. Y. Liu, X. Q. Chen, C. G. Yang, H. Wang, L. S. Zhong, S. G. Li, Y. H. Sun, J. Catal., 2018, 364, 382-393. [28] P. Gao, S. S. Dang, S. G. Li, X. N. Bu, Z. Y. Liu, M. H. Qiu, C. G. Yang, H. Wang, L. S. Zhong, Y. Han, Q. Liu, W. Wei, Y. H. Sun, ACS Catal., 2018, 8, 571-578. [29] Z. L. Li, J. J. Wang, Y. Z. Qu, H. L. Liu, C. Z. Tang, S. Miao, Z. C. Feng, H. Y. An, C. Li, ACS Catal., 2017, 7, 8544-8548. [30] S. C. Ma, S. D. Huang, Z. P. Liu, Nat. Catal., 2019, 2, 671-677. [31] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science, 2006, 314, 1124-1126. [32] R. Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc., 2013, 135, 4974-4977. [33] Y. Dong, K. K. Ghuman, R. Popescu, P. N. Duchesne, W. Zhou, J. Y. Y. Loh, A. A. Jelle, J. Jia, D. Wang, X. Mu, C. Kubel, L. Wang, L. He, M. Ghoussoub, Q. Wang, T. E. Wood, L. M. Reyes, P. Zhang, N. P. Kherani, C. V. Singh, G. A. Ozin, Adv. Sci., 2018, 5, 1700732. [34] K. K. Ghuman, L. B. Hoch, P. Szymanski, J. Y. Loh, N. P. Kherani, M. A. El-Sayed, G. A. Ozin, C. V. Singh, J. Am. Chem. Soc., 2016, 138, 1206-1214. [35] K. K. Ghuman, T. E. Wood, L. B. Hoch, C. A. Mims, G. A. Ozin, C. V. Singh, Phys. Chem. Chem. Phys., 2015, 17, 14623-14635. [36] J. Y. Ye, J. K. Johnson, ACS Catal., 2015, 5, 2921-2928. [37] Z. Q. Huang, T. Y. Zhang, C. R. Chang, J. Li, ACS Catal., 2019, 9, 5523-5536. [38] Z. Q. Huang, L. P. Liu, S. T. Qi, S. Zhang, Y. Q. Qu, C. R. Chang, ACS Catal., 2018, 8, 546-554. [39] S. Zhang, Z. Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C. R. Chang, Y. Qu, Nat. Commun., 2017, 8, 15266. [40] Y. Y. Ma, W. Gao, Z. Y. Zhang, S. Zhang, Z. M. Tian, Y. X. Liu, J. C. Ho, Y. Q. Qu, Surf. Sci. Rep., 2018, 73, 1-36. [41] A. Sofianos, Catal. Today, 1992, 15, 149-175. [42] R. C. Rabelo Neto, M. Schmal, Appl. Catal. A, 2013, 450, 131-142. [43] G. Kresse, J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15-50. [44] G. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169-11186. [45] G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269. [46] G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775. [47] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868. [48] V. V. Anisimov, J. Zaanen, O. K. Andersen, Phys. Rev. B, 1991, 44, 943-954. [49] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B, 1998, 57, 1505-1509. [50] S. Fabris, G. Vicario, G. Balducci, S. de Gironcoli, S. Baroni, J. Phys. Chem. B, 2005, 109, 22860-22867. [51] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104. [52] H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192. [53] H. Jónsson, G. Mills, K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in:B. J. Berne, G. Ciccotti, D. F. Coker Eds., Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, 1998, 385-404. [54] R. F. W. Bader, Chem. Rev., 1991, 91, 893-928. [55] S. Maintz, V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Comput. Chem., 2013, 34, 2557-2567. [56] S. Maintz, V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Comput. Chem., 2016, 37, 1030-1035. [57] V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A, 2011, 115, 5461-5461. [58] R. Dronskowski, P. E. Blochl, J. Phys. Chem., 1993, 97, 8617-8624. [59] E. A. Kümmerle, G. Heger, J. Solid State Chem., 1999, 147, 485-500. [60] Z. Li, K. Werner, K. Qian, R. You, A. P?ucienik, A. Jia, L. Wu, L. Zhang, H. Pan, H. Kuhlenbeck, S. Shaikhutdinov, W. Huang, H.-J. Freund, Angew. Chem. Int. Ed., 2019, 58, 14686-14693. [61] Z. Wu, Y. Cheng, F. Tao, L. Daemen, G. S. Foo, L. Nguyen, X. Zhang, A. Beste, A. J. Ramirez-Cuesta, J. Am. Chem. Soc., 2017, 139, 9721-9727. [62] P. M. Albrecht, D. E. Jiang, D. R. Mullins, J. Phys. Chem. C, 2014, 118, 9042-9050. [63] C. Binet, M. Daturi, J.-C. Lavalley, Catal. Today, 1999, 50, 207-225. [64] Z. Cheng, B. J. Sherman, C. S. Lo, J. Chem. Phys., 2013, 138, 014702. [65] C. Li, Y. Sakata, T. Arai, K. Domen, K.-i. Maruya, T. Onishi, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 929-943. [66] J. D. Goodpaster, A. T. Bell, M. Head-Gordon, J. Phys. Chem. Lett., 2016, 7, 1471-1477. [67] E. Pérez-Gallent, M. C. Figueiredo, F. Calle-Vallejo, M. T. M. Koper, Angew. Chem. Int. Ed., 2017, 56, 3621-3624. [68] J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Rate Constants, in:J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard (Eds.) Fundamental Concepts in Heterogeneous Catalysis, John Wiley & Sons, Inc., Hoboken, New Jersey, 2014, 47-67. |
[1] | Xinjie Song, Shipeng Fan, Zehua Cai, Zhou Yang, Xun Chen, Xianzhi Fu, Wenxin Dai. NH3 synthesis via visible-light-assisted thermocatalytic NO reduction by CO in the presence of H2O over Cu/CeO2 [J]. Chinese Journal of Catalysis, 2023, 49(6): 168-179. |
[2] | Hao Zhang, Yaqiong Su, Nikolay Kosinov, Emiel J. M. Hensen. Non-oxidative coupling of methane over Mo-doped CeO2 catalysts: Understanding surface and gas-phase processes [J]. Chinese Journal of Catalysis, 2023, 49(6): 68-80. |
[3] | Peigong Liu, Tiejun Lin, Lei Guo, Xiaozhe Liu, Kun Gong, Taizhen Yao, Yunlei An, Liangshu Zhong. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency [J]. Chinese Journal of Catalysis, 2023, 48(5): 150-163. |
[4] | Xiaoqin Han, Jiachang Zuo, Danlu Wen, Youzhu Yuan. Toluene methylation with syngas to para-xylene by bifunctional ZnZrOx-HZSM-5 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 1156-1164. |
[5] | Anxiang Guan, Yueli Quan, Yangshen Chen, Zhengzheng Liu, Junbo Zhang, Miao Kan, Quan Zhang, Haoliang Huang, Linping Qian, Linjuan Zhang, Gengfeng Zheng. Efficient CO2 fixation with acetophenone on Ag-CeO2 electrocatalyst by a double activation strategy [J]. Chinese Journal of Catalysis, 2022, 43(12): 3134-3141. |
[6] | Lulu Li, Chengyan Ge, Jiawei Ji, Wei Tan, Xin Wang, Xiaoqian Wei, Kai Guo, Changjin Tang, Lin Dong. Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2 [J]. Chinese Journal of Catalysis, 2021, 42(9): 1488-1499. |
[7] | Chunyan Dong, Yan Zhou, Na Ta, Wenlu Liu, Mingrun Li, Wenjie Shen. Shape impact of nanostructured ceria on the dispersion of Pd species [J]. Chinese Journal of Catalysis, 2021, 42(12): 2234-2241. |
[8] | Zhu-Yuan Zheng, Dong Wang, Yi Zhang, Fan Yang, Xue-Qing Gong. Structures and reactivities of the CeO2/Pt(111) reverse catalyst: A DFT+U study [J]. Chinese Journal of Catalysis, 2020, 41(9): 1360-1368. |
[9] | Matthias Scharfe, Guido Zichittella, Vladimir Paunovic, Javier Pérez-Ramírez. Ceria in halogen chemistry [J]. Chinese Journal of Catalysis, 2020, 41(6): 915-927. |
[10] | Yan Zhou, Aling Chen, Jing Ning, Wenjie Shen. Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts [J]. Chinese Journal of Catalysis, 2020, 41(6): 928-937. |
[11] | Jinghua An, Yehong Wang, Zhixin Zhang, Jian Zhang, Martin Gocyla, Rafal E. Dunin-Borkowski, Feng Wang. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 963-969. |
[12] | Md. Nurnobi Rashed, Abeda Sultana Touchy, Chandan Chaudhari, Jaewan Jeon, S. M. A. Hakim Siddiki, Takashi Toyao, Ken-ichi Shimizu. Selective C3-alkenylation of oxindole with aldehydes using heterogeneous CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 970-976. |
[13] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. Lattice oxygen activation in transition metal doped ceria [J]. Chinese Journal of Catalysis, 2020, 41(6): 977-984. |
[14] | Yuxian Gao, Zhenhua Zhang, Zhaorui Li, Weixin Huang. Understanding morphology-dependent CuOx-CeO2 interactions from the very beginning [J]. Chinese Journal of Catalysis, 2020, 41(6): 1006-1016. |
[15] | Wenjun Zhu, Xiao Chen, Jianhui Jin, Xin Di, Changhai Liang, Zhongmin Liu. Insight into catalytic properties of Co3O4-CeO2 binary oxides for propane total oxidation [J]. Chinese Journal of Catalysis, 2020, 41(4): 679-690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||