Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (5): 830-838.DOI: 10.1016/S1872-2067(19)63485-6
• Special Column on Electrocatalysis • Previous Articles Next Articles
Guodong Lia,b, Yongjie Qinb, Yu Wua,b, Lei Peib, Qi Hub, Hengpan Yangb, Qianling Zhangb, Jianhong Liub, Chuanxin Heb
Received:
2019-09-25
Revised:
2019-10-29
Online:
2020-05-18
Published:
2019-12-31
Contact:
S1872-2067(19)63485-6
Supported by:
Guodong Li, Yongjie Qin, Yu Wu, Lei Pei, Qi Hu, Hengpan Yang, Qianling Zhang, Jianhong Liu, Chuanxin He. Nitrogen and sulfur dual-doped high-surface-area hollow carbon nanospheres for efficient CO2 reduction[J]. Chinese Journal of Catalysis, 2020, 41(5): 830-838.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63485-6
[1] P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science, 2019, 364, eaav3506. [2] J. Hao, W. Shi, Chin. J. Catal., 2018, 39, 1157-1166. [3] Y. F. Wang, P. Han, X. M. Lv, L. J. Zhang, G. F. Zheng, Joule, 2018, 2, 2551-2582. [4] Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian, G. Zheng, Small Methods, 2018, 2, 1800121. [5] C. Yan, L. Lin, G. Wang, X. Bao, Chin. J. Catal., 2019, 40, 23-37. [6] Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem, 2017, 3, 560-587. [7] E. R. Cave, C. Shi, K. P. Kuhl, T. Hatsukade, D. N. Abram, C. Hahn, K. Chan, T. F. Jaramillo, ACS Catal., 2018, 8, 3035-3040. [8] J. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G. Vlachos, F. Jiao, ACS Catal., 2015, 5, 4293-4299. [9] S. Narayanaru, J. Chinnaiah, K. L. Phani, F. Scholz, Electrochim. Acta, 2018, 264, 269-274. [10] W. Zhu, L. Zhang, P. Yang, C. Hu, Z. Luo, X. Chang, Z. J. Zhao, J. Gong, Angew. Chem. Int. Ed., 2018, 57, 11544-11548. [11] H. P. Yang, Q. Lin, H. W. Zhang, G. D. Li, L. D. Fan, X. Y. Chai, Q. L. Zhang, J. H. Liu, C. X. He, Chem. Commun., 2018, 54, 4108-4111. [12] W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, S. Sun, S. Dai, H. Zhu, J. Am. Chem. Soc., 2017, 139, 8846-8854. [13] X. Bai, W. Chen, C. Zhao, S. Li, Y. Song, R. Ge, W. Wei, Y. Sun, Angew. Chem. Int. Ed., 2017, 56, 12219-12223. [14] M. Ma, H. A. Hansen, M. Valenti, Z. Wang, A. Cao, M. Dong, W. A. Smith, Nano Energy, 2017, 42, 51-57. [15] Z. Chen, K. Mou, X. Wang, L. Liu, Angew. Chem. Int. Ed., 2018, 57, 12790-12794. [16] Y. Yiliguma, Z. Wang, C. Yang, A. Guan, L. Shang, A. M. Al-Enizi, L. Zhang, G. Zheng, J. Mater. Chem. A, 2018, 6, 20121-20127. [17] L. Liu, N. Tian, L. Huang, Y.-H. Hong, A.-Y. Xie, F.-Y. Zhang, C. Xiao, Z.-Y. Zhou, S.-G. Sun, Chin. J. Catal., 2016, 37, 1070-1075. [18] P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer, M. Brookhart, J. Am. Chem. Soc., 2012, 134, 5500-5503. [19] Z. Cao, J. S. Derrick, J. Xu, R. Gao, M. Gong, E. M. Nichols, P. T. Smith, X. Liu, X. Wen, C. Coperet, C. J. Chang, Angew. Chem. Int. Ed., 2018, 57, 4981-4985. [20] B. M. Szyja, ChemElectroChem, 2018, 5, 2105-2112. [21] G. Yang, Z. Yu, J. Zhang, Z. Liang, Chin. J. Catal., 2018, 39, 914-919. [22] Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T.-K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E. H. Sargent, Nat. Chem., 2018, 10, 974-980. [23] Q. Lu, F. Jiao, Nano Energy, 2016, 29, 439-456. [24] D. J. Wilhelm, D. R. Simbeck, A.D. Karp, R. L. Dickenson, Fuel Process. Technol., 2001, 7, 139-148. [25] Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun., 2014, 5, 3242. [26] W. Zhu, Y. J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136, 16132-16135. [27] R.-H. Guo, C.-F. Liu, T.-C. Wei, C.-C. Hu, Electrochem. Commun., 2017, 80, 24-28. [28] Y. S. Ham, S. Choe, M. J. Kim, T. Lim, S.-K. Kim, J. J. Kim, Appl. Catal. B, 2017, 208, 35-43. [29] X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu, S. Dou, Adv. Mater., 2017, 29, 1701784. [30] J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Angew. Chem. Int. Ed., 2018, 57, 9640-9644. [31] M. A. Ghausi, J. Xie, Q. Li, X. Wang, R. Yang, M. Wu, Y. Wang, L. Dai, Angew. Chem. Int. Ed., 2018, 57, 13135-13139. [32] J. Wu, R. M. Yadav, M. Liu, P. P. Sharma, C. S. Tiwary, L. Ma, X. Zou, X. D. Zhou, B. I. Yakobson, J. Lou, P. M. Ajayan, ACS Nano, 2015, 9, 5364-5371. [33] Y. Liu, S. Chen, X. Quan, H. Yu, J. Am. Chem. Soc., 2015, 137, 11631-11636. [34] Y. Zhao, J. J. Liang, C. Y. Wang, J. M. Ma, G. G. Wallace, Adv. Energy. Mater., 2018, 8, 1702524. [35] P. Han, X. Yu, D. Yuan, M. Kuang, Y. Wang, A. M. Al-Enizi, G. Zheng, J. Colloid Interface Sci., 2019, 534, 332-337. [36] Y. Song, W. Chen, C. Zhao, S. Li, W. Wei, Y. Sun, Angew. Chem. Int. Ed., 2017, 56, 10840-10844. [37] X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, Angew. Chem. Int. Ed., 2018, 57, 2427-2431. [38] F. Li, M. Xue, G. P. Knowles, L. Chen, D. R. MacFarlane, J. Zhang, Electrochim. Acta, 2017, 245, 561-568. [39] H. Wang, J. Jia, P. Song, Q. Wang, D. Li, S. Min, C. Qian, L. Wang, Y. F. Li, C. Ma, T. Wu, J. Yuan, M. Antonietti, G. A. Ozin, Angew. Chem. Int. Ed., 2017, 56, 7847-7852. [40] N. P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai, M. Jaroniec, Chem. Mater., 2014, 26, 2820-2828. [41] Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc., 2018, 140, 4218-4221. [42] A. Kong, X. Zhu, Z. Han, Y. Yu, Y. Zhang, B. Dong, Y. Shan, ACS Catal., 2014, 4, 1793-1800. [43] Y. Chang, F. Hong, J. Liu, M. Xie, Q. Zhang, C. He, H. Niu, J. Liu, Carbon, 2015, 87, 424-433. [44] G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. Brett, A. B. Fuertes, M. Sevilla, M. M. Titirici, ACS Nano, 2016, 10, 5922-5932. [45] J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed., 2012, 51, 11496-11500. [46] R. Li, Z. Wei, X. Gou, ACS Catal., 2015, 5, 4133-4142. [47] J. Wang, J. Hao, D. Liu, S. Qin, D. Portehault, Y. Li, Y. Chen, W. Lei, ACS Energy Lett., 2017, 2, 306-312. [48] H. Yang, Y. Wu, Q. Lin, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He, Z. Lin, Angew. Chem. Int. Ed., 2018, 57, 15476-15480. [49] G. Li, L. Pei, Y. Wu, B. Zhu, Q. Hu, H. Yang, Q. Zhang, J. Liu, C. He, J. Mater. Chem. A, 2019, 7, 11223-11233. [50] G. Han, Y. H. Jin, R. A. Burgess, N. E. Dickenson, X. M. Cao, Y. Sun, J. Am. Chem. Soc., 2017, 139, 15584-15587. [51] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B, 1992, 46, 6671-6687. [52] G. Kresse,J. Furthmuller, Comp. Mater. Sci., 1996, 6, 15-50. [53] C. Zhou, J. Han, G. Song, R. Guo, J. Polym. Sci., Part A, 2008, 46, 3563-3572. [54] Y. Li, H. Zhang, Y. Wang, P. Liu, H. Yang, X. Yao, D. Wang, Z. Tang, H. Zhao, Energy Environ. Sci., 2014, 7, 3720-3726. [55] J. Li, Y. J. Song, G. X. Zhang, H. Y. Liu, Y. R. Wang, S. H. Sun, X. W. Guo, Adv. Funct. Mater., 2017, 27, 1604356. [56] F. Tuinstra, J. L. Koenig, J. Chem. Phys., 1970, 53, 1126. [57] R. J. Nemanich,S. A. Solin, Phys. Rev. B, 1979, 20, 392-401. [58] C. Tang, H. F. Wang, Q. Zhang, Acc. Chem. Res., 2018, 51, 881-889. [59] J. Yang, H. Sun, H. Liang, H. Ji, L. Song, C. Gao, H. Xu, Adv. Mater., 2016, 28, 4606-4613. [60] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun., 2013, 4, 2390. [61] P. P. Sharma, J. Wu, R. M. Yadav, M. Liu, C. J. Wright, C. S. Tiwary, B. I. Yakobson, J. Lou, P. M. Ajayan, X. D. Zhou, Angew. Chem. Int. Ed., 2015, 54, 13701-13705. [62] J. Wu, M. Liu, P. P. Sharma, R. M. Yadav, L. Ma, Y. Yang, X. Zou, X. D. Zhou, R. Vajtai, B. I. Yakobson, J. Lou, P. M. Ajayan, Nano Lett., 2016, 16, 466-470. [63] S. Liu, H. B. Yang, X. Huang, L. H. Liu, W. Z. Cai, J. J. Gao, X. N. Li, T. Zhang, Y. Q. Huang, B. Liu, Adv. Funct. Mater., 2018, 28, 1800499. [64] W. Li, M. Seredych, E. Rodriguez-Castellon, T. J. Bandosz, ChemSusChem, 2016, 9, 606-616. [65] H. P. Yang, H. W. Zhang, Y. Wu, L. D. Fan, X. Y. Chai, Q. L. Zhang, J. H. Liu, C. X. He, ChemSusChem, 2018, 11, 3905-3910. [66] K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Energy Environ. Sci., 2018, 11, 893-903. [67] P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su, Q. Chen, Adv. Mater., 2018, 30, 1705324. [68] H. Kiuchi, R. Shibuya, T. Kondo, J. Nakamura, H. Niwa, J. Miyawaki, M. Kawai, M. Oshima, Y. Harada, Nanoscale Res. Lett., 2016, 11, 127. [69] J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, Adv. Funct. Mater., 2013, 23, 2322-2328. [70] K. Gao, B. Wang, L. Tao, B. V. Cunning, Z. Zhang, S. Wang, R. S. Ruoff, L. Qu, Adv. Mater., 2019, 31, e1805121. [71] J. Wu, T. Sharifi, Y. Gao, T. Zhang, P. M. Ajayan, Adv. Mater., 2019, 31, e1804257. [72] R. Kortlever, J. Shen, K. J. Schouten, F. Calle-Vallejo, M. T. Koper, J. Phys. Chem. Lett., 2015, 6, 4073-4082. |
[1] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[2] | Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 117-126. |
[3] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[4] | Shenyu Shen, Qingfeng Guo, Tiantian Wu, Yaqiong Su. The dynamic behaviors of heterogeneous interfaces in electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 52-71. |
[5] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[6] | Yu Shang, Yunxuan Ding, Peili Zhang, Mei Wang, Yufei Jia, Yunlong Xu, Yaqing Li, Ke Fan, Licheng Sun. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413. |
[7] | Chuhao Liu, Yue Wu, Jinjie Fang, Ke Yu, Hui Li, Wenjun He, Weng-Chon Cheong, Shoujie Liu, Zheng Chen, Jing Dong, Chen Chen. Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1697-1702. |
[8] | Qinggang Liu, Junguo Ma, Chen Chen. Rational design and precise manipulation of nano-catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 898-912. |
[9] | Xuli Li, Ning Li, Yangqin Gao, Lei Ge. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(3): 679-707. |
[10] | Haixia Gao, Kang Liu, Tao Luo, Yu Chen, Junhua Hu, Junwei Fu, Min Liu. CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment [J]. Chinese Journal of Catalysis, 2022, 43(3): 832-838. |
[11] | Jing-Yi Xie, Bin Dong. Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting [J]. Chinese Journal of Catalysis, 2021, 42(11): 1843-1864. |
[12] | Jing Liu, Ping Song, Mingbo Ruan, Weilin Xu. Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2016, 37(7): 1119-1126. |
[13] | ZHOU Yaping, LAN Guojun, ZHOU Bin, JIANG Wei, HAN Wenfeng, LIU Huazhang, LI Ying. Effect of pore structure of mesoporous carbon on its supported Ru catalysts for ammonia synthesis [J]. Chinese Journal of Catalysis, 2013, 34(7): 1395-1401. |
[14] | 蓝Dong-Xue , LIN Dan, ZHAO Hui-Min, MA Li, CHUN Yuan. Preparation of Al2O3-MgO Acid/Base Bifunctional Material with High Specific Surface Area Using Degreasing Cotton as Exotemplate [J]. Chinese Journal of Catalysis, 2011, 32(7): 1214-1219. |
[15] | MA Li;JIANG Ping;SUN Ruiqin;CHUN Yuan*;XU Qinhua. Preparation of High Specific Surface Area MgO by a Gel-Templating Route [J]. Chinese Journal of Catalysis, 2009, 30(7): 631-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||