Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (6): 985-997.DOI: 10.1016/S1872-2067(19)63462-5
• Articles • Previous Articles Next Articles
Yaroslava Lykhacha, Tomás Skálab, Armin Neitzela, Nataliya Tsudb, Klára Beranováb, Kevin C. Princec, Vladimír Matolínb, Jörg Libudaa
Received:
2019-07-03
Revised:
2019-08-12
Online:
2020-06-18
Published:
2020-01-21
Contact:
S1872-2067(19)63462-5
Yaroslava Lykhach, Tomá? Skála, Armin Neitzel, Nataliya Tsud, Klára Beranová, Kevin C. Prince, Vladimír Matolín, J?rg Libuda. Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films[J]. Chinese Journal of Catalysis, 2020, 41(6): 985-997.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63462-5
[1] A. de Frank Bruijn, G. J. M. Janssen, in:T. E. Lipman, A. Z. Weber Eds., Fuel Cells and Hydrogen Production:A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition, Springer New York, New York, NY, 2019, pp. 195-234. [2] L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.-J. Liu, Science, 2018, 362, 1276-1281. [3] M. K. Debe, Nature, 2012, 486, 43-51. [4] Y. Lykhach, A. Bruix, S. Fabris, V. Potin, I. Matolinova, V. Matolin, J. Libuda, K. M. Neyman, Catal. Sci. Technol., 2017, 7, 4315-4345. [5] D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater., 2013, 12, 81-87. [6] Y. Xiong, L. Xiao, Y. Yang, F. J. DiSalvo, H. D. Abruña, Chem. Mater., 2018, 30, 1532-1539. [7] M. Oezaslan, F. Hasché, P. Strasser, J. Phys. Chem. Lett., 2013, 4, 3273-3291. [8] L. Wang, W. Gao, Z. Liu, Z. Zeng, Y. Liu, M. Giroux, M. Chi, G. Wang, J. Greeley, X. Pan, C. Wang, ACS Catal., 2018, 8, 35-42. [9] Q. Jia, W. Liang, M. K. Bates, P. Mani, W. Lee, S. Mukerjee, ACS Nano, 2015, 9, 387-400. [10] K. Sato, A. Ito, H. Tomonaga, H. Kanematsu, Y. Wada, H. Asakura, S. Hosokawa, T. Tanaka, T. Toriyama, T. Yamamoto, S. Matsumura, K. Nagaoka, ChemPlusChem, 2019, 84, 442-442. [11] W.-L. Yim, T. Klüner, J. Phys. Chem. C, 2010, 114, 7141-7152. [12] V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem., Int. Ed., 2006, 45, 2897-2901. [13] M. Kettner, W. B. Schneider, A. A. Auer, J. Phys. Chem. C, 2012, 116, 15432-15438. [14] E. Antolini, J. R. C. Salgado, M. J. Giz, E. R. Gonzalez, Int. J. Hydrogen Energy, 2005, 30, 1213-1220. [15] U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, V. Radmilovic, N. M. Markovic, P. N. Ross, J. Phys. Chem. B, 2002, 106, 4181-4191. [16] Y. Zhao, J. Liu, Y. Zhao, F. Wang, Phys. Chem. Chem. Phys., 2014, 16, 19298-19306. [17] S. Koh, J. Leisch, M. F. Toney, P. Strasser, J. Phys. Chem. C, 2007, 111, 3744-3752. [18] M. Heggen, M. Oezaslan, L. Houben, P. Strasser, J. Phys. Chem. C, 2012, 116, 19073-19083. [19] B. J. Hwang, S. M. S. Kumar, C.-H. Chen, Monalisa, M.-Y. Cheng, D.-G. Liu, J.-F. Lee, J. Phys. Chem. C, 2007, 111, 15267-15276. [20] I. Khalakhan, M. Vorokhta, M. Václavu, B. Šmíd, J. Lavková, I. Matolínová, R. Fiala, N. Tsud, T. Skála, V. Matolín, Electrochim. Acta, 2016, 211, 52-58. [21] L. Wang, Z. Zeng, C. Ma, Y. Liu, M. Giroux, M. Chi, J. Jin, J. Greeley, C. Wang, Nano Lett., 2017, 17, 3391-3395. [22] T. Xiang, L. Fang, J. Wan, L. Liu, J. J. Gao, H. T. Xu, H. J. Zhang, X. Gu, Y. Wang, J. Mater. Chem. A, 2018, 6, 21396-21403. [23] V. Papaefthimiou, T. Dintzer, M. Lebedeva, D. Teschner, M. Hävecker, A. Knop-Gericke, R. Schlögl, V. Pierron-Bohnes, E. Savinova, S. Zafeiratos, J. Phys. Chem. C, 2012, 116, 14342-14349. [24] A. Stassi, I. Gatto, V. Baglio, E. Passalacqua, A. S. Aricò, Appl. Catal., B, 2013, 142-143, 15-24. [25] C. T. Campbell, Z. Mao, ACS Catal., 2017, 7, 8460-8466. [26] S. L. Hemmingson, C. T. Campbell, ACS Nano, 2017, 11, 1196-1203. [27] A. Trovarelli, P. Fornasiero, Catalysis by Ceria and Related Materials, 2nd ed., Imperial College Press, London, 2013, 1-908. [28] D. R. Mullins, Surf. Sci. Rep., 2015, 70, 42-85. [29] Y. Lykhach, S. M. Kozlov, T. Skála, A. Tovt, V. Stetsovych, N. Tsud, F. Dvorák, V. Johánek, A. Neitzel, J. Myslivecek, S. Fabris, V. Matolín, K. M. Neyman, J. Libuda, Nat. Mater., 2016, 15, 284-288. [30] G. N. Vayssilov, Y. Lykhach, A. Migani, T. Staudt, G. P. Petrova, N. Tsud, T. Skála, A. Bruix, F. Illas, K. C. Prince, V. Matolín, K. M. Neyman, J. Libuda, Nat. Mater., 2011, 10, 310-315. [31] F. Šutara, M. Cabala, L. Sedlácek, T. Skála, M. Škoda, V. Matolín, K. C. Prince, V. Cháb, Thin Solid Films, 2008, 516, 6120-6124. [32] G. Vari, L. Ovari, J. Kiss, Z. Konya, Phys. Chem. Chem. Phys., 2015, 17, 5124-5132. [33] V. Matolín, I. Matolínová, L. Sedlácek, K. C. Prince, T. Skála, Nanotechnology, 2009, 20, 215706/1-215706/7. [34] J. Libra, KolXPD:Spectroscopy Data Measurement and Processing Software, http://www.kolibrik.net/science/kolxpd/. [35] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717-2730. [36] E. Martono, J. M. Vohs, J. Catal., 2012, 291, 79-86. [37] G. Vári, L. Óvári, C. Papp, H.-P. Steinrück, J. Kiss, Z. Kónya, J. Phys. Chem. C, 2015, 119, 9324-9333. [38] T. Skála, F. Šutara, M. Cabala, M. Škoda, K. C. Prince, V. Matolín, Appl. Surf. Sci., 2008, 254, 6860-6865. [39] T. Skála, F. Šutara, K. C. Prince, V. Matolín, J. Electron Spectrosc. Relat. Phenom., 2009, 169, 20-25. [40] T. Skála, F. Šutara, M. Škoda, K. C. Prince, V. Matolín, J. Phys.:Condens. Matter, 2009, 21, 055005/1-055005/9. [41] Y. Lykhach, A. Figueroba, T. Skála, T. Duchoň, N. Tsud, M. Aulická, A. Neitzel, K. Veltruská, K. C. Prince, V. Matolín, K. M. Neyman, J. Libuda, J. Mater. Chem. A, 2017, 5, 9250-9261. [42] D. Vovchok, C. J. Guild, S. Dissanayake, J. Llorca, E. Stavitski, Z. Liu, R. M. Palomino, I. Waluyo, Y. Li, A. I. Frenkel, J. A. Rodriguez, S. L. Suib, S. D. Senanayake, J. Phys. Chem. C, 2018, 122, 8998-9008. [43] M. C. Saint-Lager, R. Baudoing-Savois, M. De Santis, P. Dolle, Y. Gauthier, Surf. Sci., 1998, 418, 485-492. [44] Calculated Co-Pt phase diagram, MTDATA - Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory, http://resource.npl.co.uk/mtdata/phdiagrams/copt.htm. [45] A. Neitzel, G. Kovács, Y. Lykhach, N. Tsud, S. M. Kozlov, T. Skála, M. Vorokhta, V. Matolín, K. M. Neyman, J. Libuda, RSC Adv., 2016, 6, 85688-85697. [46] S. Penner, M. Armbrüster, ChemCatChem, 2015, 7, 374-392. [47] G. F. Cabeza, P. Légaré, A. Sadki, N. J. Castellani, Surf. Sci., 2000, 457, 121-133. [48] P. Légaré, B. Madani, G. F. Cabeza, N. J. Castellani, Int. J. Mol. Sci., 2001, 2, 246-250. [49] H. Bulou, A. Barbier, R. Belkhou, C. Guillot, B. Carrière, J. P. Deville, Surf. Sci., 1996, 352-354, 828-832. [50] Y. Lykhach, T. Staudt, M. P. A. Lorenz, R. Streber, A. Bayer, H. P. Steinrück, J. Libuda, ChemPhysChem, 2010, 11, 1496-1504. [51] A. Barbier, B. Carrière, J. P. Deville, Surf. Sci., 1995, 344, 33-41. [52] G. Kovács, S. M. Kozlov, I. Matolínová, M. Vorokhta, V. Matolín, K. M. Neyman, Phys. Chem. Chem. Phys., 2015, 17, 28298-28310. [53] M. Vorokhta, I. Khalakhan, M. Václavu, G. Kovács, S. M. Kozlov, P. Kúš, T. Skála, N. Tsud, J. Lavková, V. Potin, I. Matolínová, K. M. Neyman, V. Matolín, Appl. Surf. Sci., 2016, 365, 245-251. [54] D. J. Miller, H. Öberg, S. Kaya, H. Sanchez Casalongue, D. Friebel, T. Anniyev, H. Ogasawara, H. Bluhm, L. G. M. Pettersson, A. Nilsson, Phys. Rev. Lett., 2011, 107, 195502/1-195502/5. |
[1] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[2] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[3] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[4] | Qixian Xie, Dan Ren, Lichen Bai, Rile Ge, Wenhui Zhou, Lu Bai, Wei Xie, Junhu Wang, Michael Grätzel, Jingshan Luo. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes [J]. Chinese Journal of Catalysis, 2023, 44(1): 127-138. |
[5] | Ye Wang, Jingfeng Han, Nan Wang, Bing Li, Miao Yang, Yimo Wu, Zixiao Jiang, Yingxu Wei, Peng Tian, Zhongmin Liu. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation [J]. Chinese Journal of Catalysis, 2022, 43(8): 2259-2269. |
[6] | Si-Na Qin, Di-Ye Wei, Jie Wei, Jia-Sheng Lin, Qing-Qi Chen, Yuan-Fei Wu, Huai-Zhou Jin, Hua Zhang, Jian-Feng Li. Direct identification of the carbonate intermediate during water-gas shift reaction at Pt-NiO interfaces using surface-enhanced Raman spectroscopy [J]. Chinese Journal of Catalysis, 2022, 43(8): 2010-2016. |
[7] | Yunjian Ling, Yihua Ran, Weipeng Shao, Na Li, Feng Jiao, Xiulian Pan, Qiang Fu, Zhi Liu, Fan Yang, Xinhe Bao. Probing active species for CO hydrogenation over ZnCr2O4 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2017-2025. |
[8] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[9] | Yan Yang, Jia-ju Fu, Tang Tang, Shuai Niu, Li-Bing Zhang, Jia-nan Zhang, Jin-Song Hu. Regulating surface In-O in In@InOx core-shell nanoparticles for boosting electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2022, 43(7): 1674-1679. |
[10] | Ming He, Bingjun Xu, Qi Lu. Probing the role of surface speciation of tin oxide and tin catalysts on CO2 electroreduction combining in situ Raman spectroscopy and reactivity investigations [J]. Chinese Journal of Catalysis, 2022, 43(6): 1473-1477. |
[11] | Hong Li, Kun Jiang, Shou-Zhong Zou, Wen-Bin Cai. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies [J]. Chinese Journal of Catalysis, 2022, 43(11): 2772-2791. |
[12] | Hai-Sheng Su, Xiaoxia Chang, Bingjun Xu. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives [J]. Chinese Journal of Catalysis, 2022, 43(11): 2757-2771. |
[13] | Li-Wen Wu, Mo-Li Huang, Yun-Xiao Yang, Yi-Fan Huang. In-situ electrochemical surface-enhanced Raman spectroscopy in metal/polyelectrolyte interfaces [J]. Chinese Journal of Catalysis, 2022, 43(11): 2820-2825. |
[14] | Chiyan Liu, Qiao Dong, Yong Han, Yijing Zang, Hui Zhang, Xiaoming Xie, Yi Yu, Zhi Liu. Understanding fundamentals of electrochemical reactions with tender X-rays: A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems [J]. Chinese Journal of Catalysis, 2022, 43(11): 2858-2870. |
[15] | Jianjun Zhang, Gaoyuan Yang, Bowen He, Bei Cheng, Youji Li, Guijie Liang, Linxi Wang. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting [J]. Chinese Journal of Catalysis, 2022, 43(10): 2530-2538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||