Chinese Journal of Catalysis ›› 2023, Vol. 47: 200-213.DOI: 10.1016/S1872-2067(22)64200-1
• Article • Previous Articles Next Articles
Duozheng Maa,b,c, Xiangcheng Lib, Chuang Liub, Caroline Versluisc, Yingchun Yeb, Zhendong Wangb,c,*(), Eelco T. C. Vogtc, Bert M. Weckhuysenc,*(
), Weimin Yanga,b,*(
)
Received:
2022-10-24
Accepted:
2022-11-25
Online:
2023-04-18
Published:
2023-03-20
Contact:
*E-mail: wangzd.sshy@sinopec.com (Z. Wang),B.M.Weckhuysen@uu.nl (B. Weckhuysen),yangwm.sshy@sinopec.com (W. Yang).
Supported by:
Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran[J]. Chinese Journal of Catalysis, 2023, 47: 200-213.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64200-1
Fig. 1. (a) XRD patterns of as-made SCM-36 (bottom) and calcined SCM-36 at 550 °C (top); In-situ XRD patterns were recorded while heating the synthesized material from 30 to 700 °C (b) and its corresponding ‘heatmap’ (c). The patterns were recorded with Cu Kα-radiation.
Fig. 2. SEM images of as-synthesized (a) and calcined (b) SCM-36(35) zeolite. TEM-EDX mapping of all chemical elements (c) and its Al element (d). HRTEM images of calcined SCM-36(35) (e?g) and its FFT pattern (h).
Fig. 3. AFM topography image of the layers deposited from ethanol solution of calcined SCM-36(35) zeolite (a) and its corresponding 3D AFM mountain image (b), cross-section profiles extracted from (a) or (b) marked by the dashed red line (c). Statistical distribution of thickness of SCM-36(35) by the AFM measurements from a total of 62 valid nanosheet thickness data (d).
Fig. 4. N2 (a) and Ar (b) adsorption-desorption isotherms and micropore size distribution (by the Horvath-Kawazoe method of calcined SCM-36(35); (c) SiO2/Al2O3 ratios in synthetic gels and in SCM-36 solid products. 29Si (d) and 27Al (e) NMR spectra of calcined SCM-36(35) zeolite.
Sample | SiO2/Al2O3 | Yield (%) | ABET e (m2/g) | Aext. e (m2/g) | Amicro. e (cm2/g) | Vtotal f (cm3/g) | Vmicro. f (cm3/g) | |
---|---|---|---|---|---|---|---|---|
Gel | Bulk d | |||||||
SCM-36(25) b | 25 | 21.2 | 85 | 355 | 121 | 234 | 0.62 | 0.10 |
SCM-36(35) c | 35 | 27.3 | 80 | 348 | 138 | 210 | 0.57 | 0.09 |
SCM-36(45) c | 45 | 29.1 | 76 | 319 | 105 | 214 | 0.49 | 0.093 |
SCM-36(60) c | 60 | 36.6 | 64 | 296 | 92 | 204 | 0.45 | 0.089 |
Table 1 Structural features of SCM-36(n) zeolites a.
Sample | SiO2/Al2O3 | Yield (%) | ABET e (m2/g) | Aext. e (m2/g) | Amicro. e (cm2/g) | Vtotal f (cm3/g) | Vmicro. f (cm3/g) | |
---|---|---|---|---|---|---|---|---|
Gel | Bulk d | |||||||
SCM-36(25) b | 25 | 21.2 | 85 | 355 | 121 | 234 | 0.62 | 0.10 |
SCM-36(35) c | 35 | 27.3 | 80 | 348 | 138 | 210 | 0.57 | 0.09 |
SCM-36(45) c | 45 | 29.1 | 76 | 319 | 105 | 214 | 0.49 | 0.093 |
SCM-36(60) c | 60 | 36.6 | 64 | 296 | 92 | 204 | 0.45 | 0.089 |
Fig. 5. (a) 13C liquid NMR spectra of C16PyBr and TMAOH, 13C solid-state MAS NMR of SCM-36(25). (b) TG/DTA curves of SCM-36(25). (c) 13C liquid NMR of OTMAC and TMAOH, 13C solid-state MAS NMR of SCM-36(35). (d) TG/DTA curves of SCM-36(35).
Fig. 6. (a) NH3-TPD profiles of H-SCM-36(35). (b) Pyridine-adsorbed FT-IR spectra (measured at 150 °C) of SCM-36 zeolites synthesized with starting SiO2/Al2O3 gel compositions of ratios of 25 (1), 35 (2), 45 (3), and 60 (4). OH-stretch region (c) and CO-stretch region (d) of FT-IR spectra of SCM-36(35) zeolite. In (c) and (d), the sample was measured at 300 °C at PCO = 10.0 under pressure of PCO = 10.0 (1), 1.0 (2), 0.5 (3), 0.1 (4), 0.05 (5), 0.01(6) and 0.001 (7) mbar.
Sample | NH3-TPD a (μmol/g) | Brönsted acid b (μmol/g) | Lewis acid b (μmol/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Weak+Medium | Total | 150 °C | 250 °C | 350 °C | 150 °C | 250 °C | 350 °C | |||
SCM-36(25) | 657 | 872 | 40 | 19 | 5 | 36 | 19 | 6 | ||
SCM-36(35) | 512 | 674 | 85 | 73 | 44 | 24 | 15 | 9 | ||
SCM-36(45) | 495 | 635 | 89 | 46 | 17 | 19 | 9 | 7 | ||
SCM-36(60) | 477 | 605 | 97 | 58 | 19 | 15 | 13 | 8 |
Table 2 Acidic properties of SCM-36 given by NH3-TPD and pyridine adsorbed FT-IR spectroscopy.
Sample | NH3-TPD a (μmol/g) | Brönsted acid b (μmol/g) | Lewis acid b (μmol/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Weak+Medium | Total | 150 °C | 250 °C | 350 °C | 150 °C | 250 °C | 350 °C | |||
SCM-36(25) | 657 | 872 | 40 | 19 | 5 | 36 | 19 | 6 | ||
SCM-36(35) | 512 | 674 | 85 | 73 | 44 | 24 | 15 | 9 | ||
SCM-36(45) | 495 | 635 | 89 | 46 | 17 | 19 | 9 | 7 | ||
SCM-36(60) | 477 | 605 | 97 | 58 | 19 | 15 | 13 | 8 |
Fig. 7. In-situ UV-Vis time-resolved absorption spectra measured during the oligomerization of styrene derivatives over SCM-36(35) and ZSM-5 at 373 K for 3 min (a, c, e, and g). CFM images of spent SCM-36(35) and ZSM-5 zeolite after oligomerization (b, d, f, h). Where (a, b, e, f) were used 4-methoxystyrene, and (c, d, g, and h) were used 4-fluorostyrene as probe molecule. (i, j) Schematic illustration of the fluorescence microscopy selective staining approach. (k) Real cross-sectional slice CFM image of SCM-36 zeolite nanospheres. (l) CFM Image of 3D stacked cross-sectional slices of SCM-36. The probe molecules were excited at 488, 561 and 638 nm and the detection wavelength range was between 480-720 nm.
Catalyst | SiO2/Al2O3 a | DMF conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|---|
PX | OAB | HDO | MCP | Oligomers | |||
SCM-1 (MWW) | 15 | >99 | 63 | 18 | 4 | 4 | 11 |
Beta | 20 | >99 | 75 | 9 | 5 | 3 | 8 |
USY | 23 | >99 | 81 | 5 | 3 | 2 | 9 |
ZSM-5 | 40 | 93 | 72 | 11 | 3 | 2 | 12 |
SAPO-34 | 0.5b | >99 | 56 | 6 | 23 | 7 | 8 |
SCM-36(25) | 21.2 | >99 | 86 | 3 | 3 | 2 | 6 |
SCM-36(35) | 27.3 | 95 | 91 | 1 | 2 | 1 | 5 |
SCM-36(45) | 29.1 | >99 | 89 | 2 | 3 | 2 | 4 |
SCM-36(60) | 36.6 | 98 | 93 | 1 | 2 | 0 | 4 |
Table 3 Catalytic performances of some conventional zeolites and the newly synthesized SCM-36 zeolite in conversion of DMF and ethylene to produce PX.
Catalyst | SiO2/Al2O3 a | DMF conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|---|
PX | OAB | HDO | MCP | Oligomers | |||
SCM-1 (MWW) | 15 | >99 | 63 | 18 | 4 | 4 | 11 |
Beta | 20 | >99 | 75 | 9 | 5 | 3 | 8 |
USY | 23 | >99 | 81 | 5 | 3 | 2 | 9 |
ZSM-5 | 40 | 93 | 72 | 11 | 3 | 2 | 12 |
SAPO-34 | 0.5b | >99 | 56 | 6 | 23 | 7 | 8 |
SCM-36(25) | 21.2 | >99 | 86 | 3 | 3 | 2 | 6 |
SCM-36(35) | 27.3 | 95 | 91 | 1 | 2 | 1 | 5 |
SCM-36(45) | 29.1 | >99 | 89 | 2 | 3 | 2 | 4 |
SCM-36(60) | 36.6 | 98 | 93 | 1 | 2 | 0 | 4 |
Fig. 8. (a) Acid distribution of zeolites with different structures as a function of PX selectivity. (b) Weak and strong acid ratios of different zeolite materials as demonstrated by the NH3-TPD profile deconvolution procedure. PX selectivity (left axis) and DMF conversion (right axis) over various catalysts (c) and over SCM-36 zeolites with different bulk SiO2/Al2O3 molar ratios (d). Reaction conditions: ~1.2±0.1 mol/L of DMF (1.0 g), n-heptane (20 ml) and zeolite (1.0 g) enclosed in the reactor and then heated to 250 °C for 24 h at 2.0 MPa with ethylene.
|
[1] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[2] | Enara Fernandez, Laura Santamaria, Irati García, Maider Amutio, Maite Artetxe, Gartzen Lopez, Javier Bilbao, Martin Olazar. Elucidating coke formation and evolution in the catalytic steam reforming of biomass pyrolysis volatiles at different fixed bed locations [J]. Chinese Journal of Catalysis, 2023, 48(5): 101-116. |
[3] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[4] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[5] | Hongfang Wang, Leitao Xu, Jingcheng Wu, Peng Zhou, Shasha Tao, Yuxuan Lu, Xianwen Wu, Shuangyin Wang, Yuqin Zou. Boosting 5-hydroxymethylfurfural electrooxidation in neutral electrolytes via TEMPO-enhanced dehydrogenation and OH adsorption [J]. Chinese Journal of Catalysis, 2023, 46(3): 148-156. |
[6] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
[7] | Peerapol Pornsetmetakul, Ferdy J. A. G. Coumans, Rim C. J. van de Poll, Anna Liutkova, Duangkamon Suttipat, Brahim Mezari, Chularat Wattanakit, Emiel J. M. Hensen. Post-synthesis metal (Sn, Zr, Hf) modification of BEA zeolite: Combined Lewis and Brønsted acidity for cascade catalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 200-215. |
[8] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[9] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[10] | Jiang Zhang, Zijian Wang, Mugeng Chen, Yifeng Zhu, Yongmei Liu, Heyong He, Yong Cao, Xinhe Bao. N-doped carbon layer-coated Au nanocatalyst for H2-free conversion of 5-hydroxymethylfurfural to 5-methylfurfural [J]. Chinese Journal of Catalysis, 2022, 43(8): 2212-2222. |
[11] | Wenjuan Zhang, Pei Jing, Juan Du, Shujie Wu, Wenfu Yan, Gang Liu. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites [J]. Chinese Journal of Catalysis, 2022, 43(8): 2231-2239. |
[12] | Wenhao Cui, Dali Zhu, Juan Tan, Nan Chen, Dong Fan, Juan Wang, Jingfeng Han, Linying Wang, Peng Tian, Zhongmin Liu. Synthesis of mesoporous high-silica zeolite Y and their catalytic cracking performance [J]. Chinese Journal of Catalysis, 2022, 43(7): 1945-1954. |
[13] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials [J]. Chinese Journal of Catalysis, 2022, 43(7): 1879-1893. |
[14] | Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device [J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986. |
[15] | Ling Zhou, Yingying Li, Yuxuan Lu, Shuangyin Wang, Yuqin Zou. pH-Induced selective electrocatalytic hydrogenation of furfural on Cu electrodes [J]. Chinese Journal of Catalysis, 2022, 43(12): 3142-3153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||