Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (8): 2212-2222.DOI: 10.1016/S1872-2067(21)64049-4
• Articles • Previous Articles Next Articles
Jiang Zhanga, Zijian Wanga, Mugeng Chena, Yifeng Zhua, Yongmei Liua, Heyong Hea, Yong Caoa,*(), Xinhe Baoa,b,#(
)
Received:
2022-03-06
Accepted:
2022-03-09
Online:
2022-08-18
Published:
2022-06-20
Contact:
Yong Cao, Xinhe Bao
Supported by:
Jiang Zhang, Zijian Wang, Mugeng Chen, Yifeng Zhu, Yongmei Liu, Heyong He, Yong Cao, Xinhe Bao. N-doped carbon layer-coated Au nanocatalyst for H2-free conversion of 5-hydroxymethylfurfural to 5-methylfurfural[J]. Chinese Journal of Catalysis, 2022, 43(8): 2212-2222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64049-4
Fig. 1. (a) TEM image and particle size distribution; HRTEM images (b,c), HAADF-STEM images and corresponding EDX elemental mapping (d) of Au-4/TiO2@NPC.
Fig. 2. CO-DRIFT spectra (a) as well as XPS in the Au 4f (b) and N 1s (c) region of Au-4/TiO2@NPC-T. (1) Au-4/TiO2@NPC-500; (2) Au-4/TiO2@NPC; (3) Au-4/TiO2@NPC-700; (4) Au-4/TiO2@NPC-800.
Entry | Catalysts | Carbon balance (%) | Conversion (%) | Yield (%) | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | others | ||||
1 | Au/TiO2-4 | >99 | >99 | — | 31 | 34 | — | 35 | — |
2 | Au-4/TiO2@NPC | >99 | >99 | — | 95 | — | — | 5 | — |
3 a | Au-4/TiO2@NPC | >99 | >99 | — | 90 | — | — | 9 | 1 |
4 b | Au-4/TiO2@NPC | >99 | >99 | 2 | 92 | — | — | 6 | — |
5 | Auem/TiO2@NPC | >99 | >99 | — | 81 | — | — | 19 | — |
6 | Au-4/TiO2@NPC(5%) | >99 | >99 | — | 90 | — | — | 10 | — |
7 | Au-4/TiO2@NPC(15%) | >99 | 94 | 6 | 85 | — | 2 | 1 | — |
8 | Au-4/TiO2@NPC-500 | >99 | >99 | 9 | 89 | — | — | 2 | — |
9 | Au-4/TiO2@NPC-700 | >99 | >99 | 4 | 90 | — | — | 6 | — |
10 | Au-4/TiO2@NPC-800 | >99 | >99 | — | 87 | — | — | 13 | — |
11 | Au-2/TiO2@NPC-600 | >99 | >99 | — | 89 | — | — | 11 | — |
12 | Au-3/TiO2@NPC-600 | >99 | >99 | — | 91 | — | — | 9 | — |
13 | Au-5/TiO2@NPC-600 | >99 | 99 | 4 | 93 | — | — | 2 | — |
Table 1 FA-mediated catalytic conversion of HMF into 5-MF using various catalysts.
Entry | Catalysts | Carbon balance (%) | Conversion (%) | Yield (%) | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | others | ||||
1 | Au/TiO2-4 | >99 | >99 | — | 31 | 34 | — | 35 | — |
2 | Au-4/TiO2@NPC | >99 | >99 | — | 95 | — | — | 5 | — |
3 a | Au-4/TiO2@NPC | >99 | >99 | — | 90 | — | — | 9 | 1 |
4 b | Au-4/TiO2@NPC | >99 | >99 | 2 | 92 | — | — | 6 | — |
5 | Auem/TiO2@NPC | >99 | >99 | — | 81 | — | — | 19 | — |
6 | Au-4/TiO2@NPC(5%) | >99 | >99 | — | 90 | — | — | 10 | — |
7 | Au-4/TiO2@NPC(15%) | >99 | 94 | 6 | 85 | — | 2 | 1 | — |
8 | Au-4/TiO2@NPC-500 | >99 | >99 | 9 | 89 | — | — | 2 | — |
9 | Au-4/TiO2@NPC-700 | >99 | >99 | 4 | 90 | — | — | 6 | — |
10 | Au-4/TiO2@NPC-800 | >99 | >99 | — | 87 | — | — | 13 | — |
11 | Au-2/TiO2@NPC-600 | >99 | >99 | — | 89 | — | — | 11 | — |
12 | Au-3/TiO2@NPC-600 | >99 | >99 | — | 91 | — | — | 9 | — |
13 | Au-5/TiO2@NPC-600 | >99 | 99 | 4 | 93 | — | — | 2 | — |
Fig. 3. (a) Reuse of Au-4/TiO2@NPC in the HMF-to-5-MF transformation (reaction time 10 min). (b) TEM image and particle size distribution of Au-4/TiO2@NPC after reused six times; XPS characterization of Au 4f (c) and CO-DRIFT spectra (d) of Au-4/TiO2@NPC before and after reaction.
Fig. 5. Reaction progress of FA-mediated HMF conversion to 5-MF. (a) Time course plot. (b) Reaction network for FA-mediated HMF conversion to 5-MF. Reaction conditions: 1 mmol HMF, 4 mmol FA, Au-4/TiO2@NPC 0.4 mol%, 0.1 MPa N2, 10 mL 1,4-dioxane, 180 °C. Note: HFF: 2-hydroxy-5-fururfylformate, 5-MFF: 5-methylfururfylformate.
Fig. 6. FMF decomposition and FA decomposition over various catalysts. Reaction conditions: 1 mmol substrate, catalyst 0.04 mol%, 0.1 MPa N2, 10 mL 1,4-dioxane, 180 °C, TOF values based on 15% conversion of substrate.
Entry | Substrate | Product | Time (h) | FA (mmol) | Conversion (%) | Yield (%) | ||
---|---|---|---|---|---|---|---|---|
1 | ![]() | ![]() | 1.5 | 4 | >99 | 94 | ||
2 | ![]() | ![]() | 1.5 | 4 | >99 | 92 | ||
3 | ![]() | ![]() | 1.5 | 4 | >99 | 96 | ||
4 | ![]() | ![]() | 3 | 8 | >99 | 93 | ||
5 | ![]() | ![]() | 1.5 | 4 | >99 | 99 | ||
6 | ![]() | ![]() | 2.5 | 4 | >99 | 97 | ||
7 | ![]() | ![]() | 1.5 | 4 | trace | trace | ||
8 | ![]() | ![]() | 1.5 | 4 | trace | trace |
Table 2 FA-mediated hydrodeoxygenation of different substrates over the Au-4/TiO2@NPC catalyst.
Entry | Substrate | Product | Time (h) | FA (mmol) | Conversion (%) | Yield (%) | ||
---|---|---|---|---|---|---|---|---|
1 | ![]() | ![]() | 1.5 | 4 | >99 | 94 | ||
2 | ![]() | ![]() | 1.5 | 4 | >99 | 92 | ||
3 | ![]() | ![]() | 1.5 | 4 | >99 | 96 | ||
4 | ![]() | ![]() | 3 | 8 | >99 | 93 | ||
5 | ![]() | ![]() | 1.5 | 4 | >99 | 99 | ||
6 | ![]() | ![]() | 2.5 | 4 | >99 | 97 | ||
7 | ![]() | ![]() | 1.5 | 4 | trace | trace | ||
8 | ![]() | ![]() | 1.5 | 4 | trace | trace |
|
[1] | Wenqian Yang, Ziqian Xue, Jun Yang, Jiahui Xian, Qinglin Liu, Yanan Fan, Kai Zheng, Peiqin Liao, Hui Su, Qinghua Liu, Guangqin Li, Cheng-Yong Su. Fe nanoparticles embedded in N-doped porous carbon for enhanced electrocatalytic CO2 reduction and Zn-CO2 battery [J]. Chinese Journal of Catalysis, 2023, 48(5): 185-194. |
[2] | Hongfang Wang, Leitao Xu, Jingcheng Wu, Peng Zhou, Shasha Tao, Yuxuan Lu, Xianwen Wu, Shuangyin Wang, Yuqin Zou. Boosting 5-hydroxymethylfurfural electrooxidation in neutral electrolytes via TEMPO-enhanced dehydrogenation and OH adsorption [J]. Chinese Journal of Catalysis, 2023, 46(3): 148-156. |
[3] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[4] | Zhenyu Li, Liyuan Huai, Panpan Hao, Xi Zhao, Yongzhao Wang, Bingsen Zhang, Chunlin Chen, Jian Zhang. Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 793-801. |
[5] | Feng Hong, Shengyang Wang, Junying Zhang, Junhong Fu, Qike Jiang, Keju Sun, Jiahui Huang. Strong metal-support interaction boosting the catalytic activity of Au/TiO2 in chemoselective hydrogenation [J]. Chinese Journal of Catalysis, 2021, 42(9): 1530-1537. |
[6] | Wei Wang, Yan Xie, Shaohua Zhang, Xing Liu, Liyun Zhang, Bingsen Zhang, Masatake Haruta, Jiahui Huang. Highly efficient base-free aerobic oxidation of alcohols over gold nanoparticles supported on ZnO-CuO mixed oxides [J]. Chinese Journal of Catalysis, 2019, 40(12): 1924-1933. |
[7] | K. Parthasarathy, T. Ponpandian, C. Praveen. Gold-catalyzed addition reaction between creatinine and isatin: A sustainable and green chemistry approach for the diastereoselective synthesis of 3-substituted-3-hydroxyisatins [J]. Chinese Journal of Catalysis, 2017, 38(5): 775-783. |
[8] | Chandrasekar Praveen, Paramasivan T. Perumal. Extrapolation of the gold-catalyzed cycloisomerization to the palladium-catalyzed cross-coupling/cycloisomerization of acetylenic alcohols for the synthesis of polysubstituted furans: Scope and application to tandem processes [J]. Chinese Journal of Catalysis, 2016, 37(2): 288-299. |
[9] | Yu-Xin Miao, Jing Wang, Wen-Cui Li. Enhanced catalytic activities and selectivities in preferential oxidation of CO over ceria-promoted Au/Al2O3 catalysts [J]. Chinese Journal of Catalysis, 2016, 37(10): 1721-1728. |
[10] | Daniel Widmann, R. Jürgen Behm. Formation and removal of active oxygen species for the non-catalytic CO oxidation on Au/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2016, 37(10): 1684-1693. |
[11] | Zong-Fang Wu, Zhi-Quan Jiang, Yue-Kang Jin, Feng Xiong, Guang-Hui Sun, Wei-Xin Huang. Oxidation of formic acid on stepped Au(997) surface [J]. Chinese Journal of Catalysis, 2016, 37(10): 1738-1746. |
[12] | Peter Priecel, Hammed Adekunle Salami, Romen Herrera Padilla, Ziyi Zhong, Jose Antonio Lopez-Sanchez. Anisotropic gold nanoparticles: Preparation and applications in catalysis [J]. Chinese Journal of Catalysis, 2016, 37(10): 1619-1650. |
[13] | Jiahan Xie, Junfang Nie, Haichao Liu. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base [J]. Chinese Journal of Catalysis, 2014, 35(6): 937-944. |
[14] | Gabriel Morales, Juan A. Melero, Marta Paniagua, Jose Iglesias, Blanca Hernández, María Sanz. Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide [J]. Chinese Journal of Catalysis, 2014, 35(5): 644-655. |
[15] | Xiaochen Zhang, Min Wang, Yehong Wang, Chaofeng Zhang, Zhe Zhang, Feng Wang, Jie Xu. Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylfurfural [J]. Chinese Journal of Catalysis, 2014, 35(5): 703-708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||