Chinese Journal of Catalysis ›› 2023, Vol. 55: 200-215.DOI: 10.1016/S1872-2067(23)64539-5
• Articles • Previous Articles Next Articles
Peerapol Pornsetmetakula,b, Ferdy J. A. G. Coumans b, Rim C. J. van de Poll b, Anna Liutkova b, Duangkamon Suttipata,b, Brahim Mezari b, Chularat Wattanakita,*(), Emiel J. M. Hensenb,*(
)
Received:
2023-08-25
Accepted:
2023-10-17
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: Peerapol Pornsetmetakul, Ferdy J. A. G. Coumans, Rim C. J. van de Poll, Anna Liutkova, Duangkamon Suttipat, Brahim Mezari, Chularat Wattanakit, Emiel J. M. Hensen. Post-synthesis metal (Sn, Zr, Hf) modification of BEA zeolite: Combined Lewis and Brønsted acidity for cascade catalysis[J]. Chinese Journal of Catalysis, 2023, 55: 200-215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64539-5
Fig. 1. (a) XRD patterns of Com-BEA-M, Com-BEA-M(no-wash), and Com-BEA-deal samples. UV-Vis spectra of Zr-modified Com-BEA (b) and Sn-modified Com-BEA (c) samples. STEM-EDX images of Com-BEA-Sn (d) and Com-BEA-Sn(no-wash) (e). Si and Sn are shown in red and green, respectively.
Fig. 2. (a) XRD patterns of Com-BEA zeolites after dealumination and metal modification. (b) Enlargement of (a) 2θ of 21°?24° range. (c) IR spectra of dehydrated Com-BEA-deal and Com-BEA-M zeolites. (d) Enlargement of (c) in the 3600-3850 cm?1 region. (e) XRD patterns of Sn modified BEA zeolites with various morphologies. (f) Enlargement of (e) in the 2θ region of 21°?24° range. (g) STEM-HAADF images of Com-BEA-M zeolites.
Sample | Si/Al | Si/M | Fractional removal or incorporation a | wt% M | μmol M g‒1 |
---|---|---|---|---|---|
Com-BEA | 13 | — | — | — | — |
Com-BEA-deal | >1124 | — | >99 | — | — |
Com-BEA-Zr | >1124 | 53.7 | 25 | 2.7 | 299.3 |
Com-BEA-Sn | >1124 | 74.7 | 18 | 2.6 | 216.5 |
Com-BEA-Hf | >1124 | 67.3 | 20 | 4.2 | 235.3 |
Table 1 Elemental composition of BEA zeolites determined by ICP-OES analysis.
Sample | Si/Al | Si/M | Fractional removal or incorporation a | wt% M | μmol M g‒1 |
---|---|---|---|---|---|
Com-BEA | 13 | — | — | — | — |
Com-BEA-deal | >1124 | — | >99 | — | — |
Com-BEA-Zr | >1124 | 53.7 | 25 | 2.7 | 299.3 |
Com-BEA-Sn | >1124 | 74.7 | 18 | 2.6 | 216.5 |
Com-BEA-Hf | >1124 | 67.3 | 20 | 4.2 | 235.3 |
Fig. 3. Weight-normalized 29Si MAS NMR (a), 29Si-1H CP MAS NMR (b), weight-normalized 27Al MAS NMR (c) spectra of hydrated zeolites and weight-normalized 1H MAS NMR spectra (d) of Com-BEA, Com-BEA-deal, and Com-BEA-M zeolites. (e) A zoom of 2?8 ppm region of (d).
Fig. 5. CO IR spectra recorded at liquid N2 temperature (hydroxyl stretching vibration region and carbonyl stretching vibration) of Com-BEA (a,f), Com-BEA-deal (b,g), Com-BEA-Sn (c,h), Com-BEA-Zr (d,i), and Com-BEA-Hf (e,j), respectively. CO IR spectra (f?j) in carbonyl stretching region are reference to IR spectra of dehydrated samples.
Fig. 6. (a) 15N CP MAS NMR spectra of pyridine-15N adsorbed on zeolites after adsorption at 50 °C for 0.5 h (dash line) and desorption under evacuation at 150 °C for 1.5 h (solid line). (b) Chemical shift scale and the corresponding species. The spectra were recorded at ambient conditions.
Fig. 7. Catalytic cascade reductive etherification of cinnamaldehyde (a) and etherification of cinnamyl alcohol (b). Reaction conditions: 0.53 mmol (71.1 mg) cinnamaldehyde or cinnamyl alcohol, isopropanol/substrate molar ratio = 97.5 (4 mL isopropanol), catalyst amount = 15 mg, 10 bar He, T = 120 °C for (a) and 150 °C for (b).
Scheme 3. Chemical moieties in metal-modified BEA zeolite giving rise to Lewis and Br?nsted acid sites. Lewis acid sites are derived from isolated metal ions (purple). Br?nsted acid sites (red) are derived from silanols perturbed by Lewis acidic metal ions of open metal sites and the OH group connected to the open metal sites.
|
[1] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[2] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[3] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[4] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[5] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
[6] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials [J]. Chinese Journal of Catalysis, 2022, 43(7): 1879-1893. |
[7] | Wenhao Cui, Dali Zhu, Juan Tan, Nan Chen, Dong Fan, Juan Wang, Jingfeng Han, Linying Wang, Peng Tian, Zhongmin Liu. Synthesis of mesoporous high-silica zeolite Y and their catalytic cracking performance [J]. Chinese Journal of Catalysis, 2022, 43(7): 1945-1954. |
[8] | Kaipeng Cao, Dong Fan, Shu Zeng, Benhan Fan, Nan Chen, Mingbin Gao, Dali Zhu, Linying Wang, Peng Tian, Zhongmin Liu. Organic-free synthesis of MOR nanoassemblies with excellent DME carbonylation performance [J]. Chinese Journal of Catalysis, 2021, 42(9): 1468-1477. |
[9] | Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Michael Hunger, Landong Li. Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite [J]. Chinese Journal of Catalysis, 2021, 42(7): 1176-1184. |
[10] | Sen Wang, Zhikai Li, Zhangfeng Qin, Mei Dong, Junfen Li, Weibin Fan, Jianguo Wang. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion [J]. Chinese Journal of Catalysis, 2021, 42(7): 1126-1136. |
[11] | Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid [J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003. |
[12] | Huimin Luan, Chi Lei, Ye Ma, Qinming Wu, Longfeng Zhu, Hao Xu, Shichao Han, Qiuyan Zhu, Xiaolong Liu, Xiangju Meng, Feng-Shou Xiao. Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents [J]. Chinese Journal of Catalysis, 2021, 42(4): 563-570. |
[13] | Tingting Yan, Sikai Yao, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites [J]. Chinese Journal of Catalysis, 2021, 42(4): 595-605. |
[14] | Haoyang Zhang, Lifen Xu, Xinyu Chang, Songsong Miao, Yuting Sun, Mingjun Jia. Direct hydrothermal synthesis of Mo-containing MFI zeolites using Mo-EDTA complex and their catalytic application in cyclohexene epoxidation [J]. Chinese Journal of Catalysis, 2021, 42(12): 2265-2274. |
[15] | Yuyao Wang, Li Li, Risheng Bai, Shiqin Gao, Zhaochi Feng, Qiang Zhang, Jihong Yu. Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species [J]. Chinese Journal of Catalysis, 2021, 42(12): 2189-2196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||