Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (4): 595-605.DOI: 10.1016/S1872-2067(20)63675-0
• Articles • Previous Articles Next Articles
Tingting Yana, Sikai Yaoa, Weili Daia,*(), Guangjun Wua, Naijia Guana,b, Landong Lia,b,#(
)
Received:
2020-05-17
Accepted:
2020-06-28
Online:
2021-04-18
Published:
2021-01-22
Contact:
Weili Dai,Landong Li
About author:
#Tel/Fax: +86-22-23500341; E-mail: lild@nankai.edu.cnSupported by:
Tingting Yan, Sikai Yao, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites[J]. Chinese Journal of Catalysis, 2021, 42(4): 595-605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63675-0
Fig. 1. Self-aldol condensation of propyl aldehyde over different catalysts. Reaction conditions: 0.16 g catalyst, WHSV = 1.0/h, T = 573 K, TOS = 2 h.
Fig. 2. Propyl aldehyde conversion with time-on-stream of Y/Beta, La/Beta, Sc/Beta and Ce/Beta catalysts. Reaction conditions: 0.16 g catalyst, WHSV = 1.0/h, T = 573 K; Regeneration conditions: calcination in flowing air at 773 K for 4 h.
IR bands | Assignments |
---|---|
3734 cm-1 | O-H stretching vibrations of Si-OH |
3672 cm-1 | O-H stretching vibrations of Y-OH |
3000-2700 cm-1 | C-H stretching vibrations of methyl and methylene groups |
1741 cm-1 | C=O stretching vibrations of chemisorbed aldehydes |
1765 cm-1 | C=O stretching vibrations of gas phase aldehydes |
1687 cm-1 | C=O stretching vibrations of α,β-unsaturated carbonyl groups |
1643 cm-1 | C=C stretching vibrations of α,β-unsaturated carbonyl groups |
1608 &1597 cm-1 | C=C stretching vibrations of carbonaceous or aromatics species |
1462 cm-1 | C-H bending vibrations of aromatic ring |
1456 & 1404 cm-1 | C-H bending vibrations of aldehyde or aldol dimer |
1305 & 1174 cm-1 | Aldehyde molecules coordinated to Lewis acid sites |
Table 2 Summary of IR bands observed and their assignments.
IR bands | Assignments |
---|---|
3734 cm-1 | O-H stretching vibrations of Si-OH |
3672 cm-1 | O-H stretching vibrations of Y-OH |
3000-2700 cm-1 | C-H stretching vibrations of methyl and methylene groups |
1741 cm-1 | C=O stretching vibrations of chemisorbed aldehydes |
1765 cm-1 | C=O stretching vibrations of gas phase aldehydes |
1687 cm-1 | C=O stretching vibrations of α,β-unsaturated carbonyl groups |
1643 cm-1 | C=C stretching vibrations of α,β-unsaturated carbonyl groups |
1608 &1597 cm-1 | C=C stretching vibrations of carbonaceous or aromatics species |
1462 cm-1 | C-H bending vibrations of aromatic ring |
1456 & 1404 cm-1 | C-H bending vibrations of aldehyde or aldol dimer |
1305 & 1174 cm-1 | Aldehyde molecules coordinated to Lewis acid sites |
Catalyst | nsi/nAl a | Surface area b (m2/g) | Pore volume c (cm3/g) |
---|---|---|---|
H-Beta | 14 | 562 | 0.194 |
[Si]Beta | > 1800 | 581 | 0.206 |
Y/Beta | > 1800 | 527 | 0.171 |
La/Beta | > 1800 | 524 | 0.170 |
Ce/Beta | > 1800 | 532 | 0.174 |
Sc/Beta | > 1800 | 531 | 0.172 |
Table 1 Physicochemical properties of zeolites.
Catalyst | nsi/nAl a | Surface area b (m2/g) | Pore volume c (cm3/g) |
---|---|---|---|
H-Beta | 14 | 562 | 0.194 |
[Si]Beta | > 1800 | 581 | 0.206 |
Y/Beta | > 1800 | 527 | 0.171 |
La/Beta | > 1800 | 524 | 0.170 |
Ce/Beta | > 1800 | 532 | 0.174 |
Sc/Beta | > 1800 | 531 | 0.172 |
Fig. 5. In situ DRIFTS recorded during propyl aldehyde conversion over Y/Beta and Y2O3 for TOS of 60 min. Reaction conditions: WHSV = 1.0/h, T = 573 K.
Fig. 6. In situ UV-vis DRS recorded during propyl aldehyde conversion over Y/Beta and Y2O3 for TOS of 60 min. Reaction conditions: WHSV = 0.3/h, T = 573 K.
Fig. 8. Optimized structures of Y/Beta. The active sites in Y/Beta-I and Y/Beta-II are Y(OSi)3 and Y(OSi)2(OH), respectively. (cyan: Y; yellow: Si; red: O; white: H).
Entry | Model | Ea (eV) | ΔE (eV) |
---|---|---|---|
P1 | Y/Beta-I | 1.07 | 0.10 |
P2 | Y/Beta-IIa | 1.01 | 0.49 |
P3 | Y/Beta-IIb | 0.82 | 0.38 |
Table 3 Energy barriers (Ea) and reaction energies (ΔE) for keto-enol tautomerization of various models.
Entry | Model | Ea (eV) | ΔE (eV) |
---|---|---|---|
P1 | Y/Beta-I | 1.07 | 0.10 |
P2 | Y/Beta-IIa | 1.01 | 0.49 |
P3 | Y/Beta-IIb | 0.82 | 0.38 |
Entry | Model | Ea (eV) | ΔE (eV) |
---|---|---|---|
P1 | Y/Beta-I | 0.61 | 0.01 |
P2 | Y/Beta-IIa | 0.33 | -0.31 |
P3 | Y/Beta-IIb | — | -0.32 |
Table 4 Energy barriers and reaction energies of alkoxy anion hydrogenation on various models.
Entry | Model | Ea (eV) | ΔE (eV) |
---|---|---|---|
P1 | Y/Beta-I | 0.61 | 0.01 |
P2 | Y/Beta-IIa | 0.33 | -0.31 |
P3 | Y/Beta-IIb | — | -0.32 |
Entry | Model | Ea (eV) | ΔE (eV) |
---|---|---|---|
P1 | Y/Beta-I | 2.24 | 0.35 |
P2 | Y/Beta-IIa | 2.30 | 0.37 |
P3 | Y/Beta-IIb | 1.63 | 0.15 |
Gas phase | 2.00 | 0.19 |
Table 5 Energy barriers and reaction energies for aldol dimer dehydration on various models.
Entry | Model | Ea (eV) | ΔE (eV) |
---|---|---|---|
P1 | Y/Beta-I | 2.24 | 0.35 |
P2 | Y/Beta-IIa | 2.30 | 0.37 |
P3 | Y/Beta-IIb | 1.63 | 0.15 |
Gas phase | 2.00 | 0.19 |
Fig. 9. Configurations of initial and transition states of aldol dimer dehydration on Y/Beta-I and Y/Beta-II. (cyan: Y; yellow: Si; red: O; gray: C; white: H).
|
[1] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[2] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[3] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[4] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[5] | Yan-Wen Ye, Yi-Ming Hu, Wan-Bin Zheng, Ai-Ping Jia, Yu Wang, Ji-Qing Lu. Hydrogenation of crotonaldehyde over ligand-capped Ir catalysts: Metal-organic interface boosts both activity and selectivity [J]. Chinese Journal of Catalysis, 2023, 47(4): 265-277. |
[6] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[7] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[8] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
[9] | Peerapol Pornsetmetakul, Ferdy J. A. G. Coumans, Rim C. J. van de Poll, Anna Liutkova, Duangkamon Suttipat, Brahim Mezari, Chularat Wattanakit, Emiel J. M. Hensen. Post-synthesis metal (Sn, Zr, Hf) modification of BEA zeolite: Combined Lewis and Brønsted acidity for cascade catalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 200-215. |
[10] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials [J]. Chinese Journal of Catalysis, 2022, 43(7): 1879-1893. |
[11] | Wenhao Cui, Dali Zhu, Juan Tan, Nan Chen, Dong Fan, Juan Wang, Jingfeng Han, Linying Wang, Peng Tian, Zhongmin Liu. Synthesis of mesoporous high-silica zeolite Y and their catalytic cracking performance [J]. Chinese Journal of Catalysis, 2022, 43(7): 1945-1954. |
[12] | Muhammad Tayyab, Yujie Liu, Shixiong Min, Rana Muhammad Irfan, Qiaohong Zhu, Liang Zhou, Juying Lei, Jinlong Zhang. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires [J]. Chinese Journal of Catalysis, 2022, 43(4): 1165-1175. |
[13] | Chun-Hua Ma, Yu Ji, Jie Zhao, Xing He, Shu-Ting Zhang, Yu-Qin Jiang, Bing Yu. Transition-metal-free three-component acetalation-pyridylation of alkenes via photoredox catalysis [J]. Chinese Journal of Catalysis, 2022, 43(3): 571-583. |
[14] | Changshun Deng, Yun Cui, Junchao Chen, Teng Chen, Xuefeng Guo, Weijie Ji, Luming Peng, Weiping Ding. Enzyme-like mechanism of selective toluene oxidation to benzaldehyde over organophosphoric acid-bonded nano-oxides [J]. Chinese Journal of Catalysis, 2021, 42(9): 1509-1518. |
[15] | Kaipeng Cao, Dong Fan, Shu Zeng, Benhan Fan, Nan Chen, Mingbin Gao, Dali Zhu, Linying Wang, Peng Tian, Zhongmin Liu. Organic-free synthesis of MOR nanoassemblies with excellent DME carbonylation performance [J]. Chinese Journal of Catalysis, 2021, 42(9): 1468-1477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||