Chinese Journal of Catalysis ›› 2023, Vol. 47: 265-277.DOI: 10.1016/S1872-2067(23)64399-2
• Article • Previous Articles
Yan-Wen Ye1, Yi-Ming Hu1, Wan-Bin Zheng, Ai-Ping Jia, Yu Wang*(), Ji-Qing Lu*(
)
Received:
2022-11-26
Accepted:
2023-01-19
Online:
2023-04-18
Published:
2023-03-20
Contact:
*E-mail: yuwang@zjnu.cn (Y. Wang),jiqinglu@zjnu.cn (J.-Q. Lu).
About author:
1Contributed equally to this work.
Supported by:
Yan-Wen Ye, Yi-Ming Hu, Wan-Bin Zheng, Ai-Ping Jia, Yu Wang, Ji-Qing Lu. Hydrogenation of crotonaldehyde over ligand-capped Ir catalysts: Metal-organic interface boosts both activity and selectivity[J]. Chinese Journal of Catalysis, 2023, 47: 265-277.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64399-2
Catalyst | Ir content /wt% | Conv. a /% | Selectivity a/% | Reaction rate /μmolCRAL gIr-1 s-1 | Formation rate /μmolCROL gIr-1 s-1 | TOFCROL b /× 10-3 s-1 | |||
---|---|---|---|---|---|---|---|---|---|
CROL | BUAL | BUOL | Others | ||||||
Ir/BN-C1 | 1.3 | 10.9 | 96.3 | 2.8 | 0.4 | 0.5 | 16.2 | 15.6 | 7.7 |
Ir/BN-C2 | 1.3 | 16.4 | 96.0 | 2.4 | 0.7 | 0.9 | 24.4 | 23.4 | n.d. |
Ir/BN-C3 | 1.3 | 28.9 | 94.4 | 3.8 | 1.1 | 0.7 | 43.0 | 40.6 | 20.0 |
Ir/BN-C4 | 1.3 | 9.1 | 58.2 | 39.7 | 1.5 | 0.6 | 13.5 | 7.86 | n.d. |
Ir/BN-C5 | 1.3 | 8.9 | 56.2 | 41.3 | 2.0 | 0.5 | 13.2 | 7.41 | 4.2 |
Ir/BN-IM-C3 | 3.0 | 12.3 | 49.0 | 43.7 | 6.0 | 1.3 | 7.93 | 3.88 | 1.9 |
Table 1 Ir contents and catalytic behaviors of various catalysts.
Catalyst | Ir content /wt% | Conv. a /% | Selectivity a/% | Reaction rate /μmolCRAL gIr-1 s-1 | Formation rate /μmolCROL gIr-1 s-1 | TOFCROL b /× 10-3 s-1 | |||
---|---|---|---|---|---|---|---|---|---|
CROL | BUAL | BUOL | Others | ||||||
Ir/BN-C1 | 1.3 | 10.9 | 96.3 | 2.8 | 0.4 | 0.5 | 16.2 | 15.6 | 7.7 |
Ir/BN-C2 | 1.3 | 16.4 | 96.0 | 2.4 | 0.7 | 0.9 | 24.4 | 23.4 | n.d. |
Ir/BN-C3 | 1.3 | 28.9 | 94.4 | 3.8 | 1.1 | 0.7 | 43.0 | 40.6 | 20.0 |
Ir/BN-C4 | 1.3 | 9.1 | 58.2 | 39.7 | 1.5 | 0.6 | 13.5 | 7.86 | n.d. |
Ir/BN-C5 | 1.3 | 8.9 | 56.2 | 41.3 | 2.0 | 0.5 | 13.2 | 7.41 | 4.2 |
Ir/BN-IM-C3 | 3.0 | 12.3 | 49.0 | 43.7 | 6.0 | 1.3 | 7.93 | 3.88 | 1.9 |
Fig. 1. (a) XRD patterns of various catalysts; HRTEM images of fresh prepared Ir NPs (b), pre-reduced Ir/BN-C1 (c), pre-reduced Ir/BN-C3 (d), pre- reduced Ir/BN-C5 (e) and pre-reduced Ir/BN-IM-C3 (f).
Fig. 2. Ir 4f XPS spectra (a) and CO-DRIFT spectra (b) of Ir/BN-C1, Ir/BN-C3, Ir/BN-C5 and Ir/BN-IM-C3 catalysts. (c) TG profile of fresh prepared Ir NPs. (d) FTIR spectra of Ir NPs pretreated in O2 at elevated temperatures.
Fig. 3. Catalytic performance of Ir/BN-C1, Ir/BN-C2, Ir/BN-C3, Ir/BN-C4, Ir/BN-C5 and Ir/BN-IM-C3 catalysts. CRAL conversion (a), selectivity to CROL (b), selectivity to BUAL (c) and Reaction rate and CROL formation rate (d) at quasi-steady states after 8 h reaction. Reaction conditions: catalyst = 100 mg, reaction temperature = 80 °C, total flow = 26 mL min?1, CRAL concentration = 1 mol%.
Fig. 4. Dependence of CROL formation rate on CRAL partial pressure (a) and H2 partial pressure (b). (c) Arrhenius plots of CROL formation over various catalysts.
Catalyst | Power law rate expression CROL formation rate = kapp × 10-9 [CRAL]a[H2]b | Ea for CROL formation /kJ mol-1 | k/× 10-7 mol g-1 s-1 | KCRAL/kPa-1 | KH2 × 10-2 /kPa-1 | ||
---|---|---|---|---|---|---|---|
Kapp | a | b | |||||
Ir/BN-C1 | 0.71 | 0.35 ± 0.07 | 0.98 ± 0.06 | 43.8 ± 3.8 | 5.05 | 0.91 | 0.69 |
Ir/BN-C3 | 4.15 | 0.37 ± 0.02 | 1.05 ± 0.13 | 34.5 ± 4.5 | 18.2 | 0.86 | 0.64 |
Ir/BN-C5 | 1.25 | 0.61 ± 0.11 | 0.66 ± 0.06 | 40.8 ± 2.5 | 1.83 | 0.44 | 2.19 |
Ir/BN-IM-C3 | 1.83 | 0.63 ± 0.02 | 0.60 ± 0.02 | 42.3 ± 1.0 | 2.38 | 0.34 | 2.87 |
Table 2 Derived kinetic parameters of various catalysts.
Catalyst | Power law rate expression CROL formation rate = kapp × 10-9 [CRAL]a[H2]b | Ea for CROL formation /kJ mol-1 | k/× 10-7 mol g-1 s-1 | KCRAL/kPa-1 | KH2 × 10-2 /kPa-1 | ||
---|---|---|---|---|---|---|---|
Kapp | a | b | |||||
Ir/BN-C1 | 0.71 | 0.35 ± 0.07 | 0.98 ± 0.06 | 43.8 ± 3.8 | 5.05 | 0.91 | 0.69 |
Ir/BN-C3 | 4.15 | 0.37 ± 0.02 | 1.05 ± 0.13 | 34.5 ± 4.5 | 18.2 | 0.86 | 0.64 |
Ir/BN-C5 | 1.25 | 0.61 ± 0.11 | 0.66 ± 0.06 | 40.8 ± 2.5 | 1.83 | 0.44 | 2.19 |
Ir/BN-IM-C3 | 1.83 | 0.63 ± 0.02 | 0.60 ± 0.02 | 42.3 ± 1.0 | 2.38 | 0.34 | 2.87 |
On Ir/BN-C5 or Ir/BN-IM-C3 catalyst | |
---|---|
$\text{RCHO+I}{{\text{r}}_{1}}*\overset{{{\text{K}}_{\text{CRAL}}}}{\longleftrightarrow}\text{RCHO}-\text{I}{{\text{r}}_{1}}$ | (1) |
${{\text{H}}_{2}}+\text{I}{{\text{r}}_{2}}*\overset{{{\text{K}}_{{{\text{H}}_{2}}}}}{\longleftrightarrow}{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}+{{\text{H}}^{+}}$ | (2) |
$\text{RCHO}-\text{I}{{\text{r}}_{1}}+{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}\xrightarrow{{{\text{k}}_{1}}}\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{I}{{\text{r}}_{1}}+\text{I}{{\text{r}}_{2}}*$ | (3) RDS |
$\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{I}{{\text{r}}_{1}}+{{\text{H}}^{+}}\xrightarrow{{{\text{k}}_{2}}}\text{RC}{{\text{H}}_{2}}\text{OH}-\text{I}{{\text{r}}_{1}}$ | (4) |
$\text{RC}{{\text{H}}_{2}}\text{OH}-\text{I}{{\text{r}}_{1}}\overset{{{\text{K}}_{\text{CROL}}}^{-1}}{\longleftrightarrow}\text{RC}{{\text{H}}_{2}}\text{OH+I}{{\text{r}}_{1}}*$ | (5) |
RCHO + H2 → RCH2OH | overall reaction |
$\text{r=k}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{/ }\!\![\!\!\text{ (1+}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}+{{\text{K}}_{\text{CROL}}}{{\text{P}}_{\text{CROL}}}\text{)(1+}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{) }\!\!]\!\!\text{ }$ Ir1*: site for CRAL (RCHO) adsorption; Ir2*: site for H2 adsorption | rate expression |
On Ir/BN-C1 or Ir/BN-C3 catalyst* | |
$\text{RCHO+TTAB*}\overset{{{\text{K}}_{\text{CRAL}}}}{\longleftrightarrow}\text{RCHO-TTAB}$ | (1’) |
${{\text{H}}_{2}}+\text{I}{{\text{r}}_{2}}*\overset{{{\text{K}}_{{{\text{H}}_{2}}}}}{\longleftrightarrow}{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}+{{\text{H}}^{+}}$ | (2’) |
$\text{RCHO}-\text{TTAB}+{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}\xrightarrow{{{\text{k}}_{1}}}\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{TTAB}+\text{I}{{\text{r}}_{2}}*$ | (e3’) RDS |
$\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{TTAB}+{{\text{H}}^{+}}\xrightarrow{{{\text{k}}_{2}}}\text{RC}{{\text{H}}_{2}}\text{OH}-\text{I}{{\text{r}}_{1}}$ | (4’) |
$\text{RC}{{\text{H}}_{2}}\text{OH}-\text{TTAB}\overset{{{\text{K}}_{\text{CROL}}}^{-1}}{\longleftrightarrow}\text{RC}{{\text{H}}_{2}}\text{OH+TTAB}*$ | (5’) |
RCHO + H2 → RCH2OH | overall reaction |
$\text{r=k}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{/ }\!\![\!\!\text{ (1+}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}+{{\text{K}}_{\text{CROL}}}{{\text{P}}_{\text{CROL}}}\text{)(1+}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{) }\!\!]\!\!\text{ }$ TTAB*: site for CRAL (RCHO) adsorption; Ir2*: site for H2 adsorption | rate expression |
*: Eqs. (1’)-(6’) only represent those on Ir-TTAB interfacial sites. |
Table 3 Proposed elementary steps for the formation of CROL on various catalysts.
On Ir/BN-C5 or Ir/BN-IM-C3 catalyst | |
---|---|
$\text{RCHO+I}{{\text{r}}_{1}}*\overset{{{\text{K}}_{\text{CRAL}}}}{\longleftrightarrow}\text{RCHO}-\text{I}{{\text{r}}_{1}}$ | (1) |
${{\text{H}}_{2}}+\text{I}{{\text{r}}_{2}}*\overset{{{\text{K}}_{{{\text{H}}_{2}}}}}{\longleftrightarrow}{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}+{{\text{H}}^{+}}$ | (2) |
$\text{RCHO}-\text{I}{{\text{r}}_{1}}+{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}\xrightarrow{{{\text{k}}_{1}}}\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{I}{{\text{r}}_{1}}+\text{I}{{\text{r}}_{2}}*$ | (3) RDS |
$\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{I}{{\text{r}}_{1}}+{{\text{H}}^{+}}\xrightarrow{{{\text{k}}_{2}}}\text{RC}{{\text{H}}_{2}}\text{OH}-\text{I}{{\text{r}}_{1}}$ | (4) |
$\text{RC}{{\text{H}}_{2}}\text{OH}-\text{I}{{\text{r}}_{1}}\overset{{{\text{K}}_{\text{CROL}}}^{-1}}{\longleftrightarrow}\text{RC}{{\text{H}}_{2}}\text{OH+I}{{\text{r}}_{1}}*$ | (5) |
RCHO + H2 → RCH2OH | overall reaction |
$\text{r=k}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{/ }\!\![\!\!\text{ (1+}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}+{{\text{K}}_{\text{CROL}}}{{\text{P}}_{\text{CROL}}}\text{)(1+}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{) }\!\!]\!\!\text{ }$ Ir1*: site for CRAL (RCHO) adsorption; Ir2*: site for H2 adsorption | rate expression |
On Ir/BN-C1 or Ir/BN-C3 catalyst* | |
$\text{RCHO+TTAB*}\overset{{{\text{K}}_{\text{CRAL}}}}{\longleftrightarrow}\text{RCHO-TTAB}$ | (1’) |
${{\text{H}}_{2}}+\text{I}{{\text{r}}_{2}}*\overset{{{\text{K}}_{{{\text{H}}_{2}}}}}{\longleftrightarrow}{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}+{{\text{H}}^{+}}$ | (2’) |
$\text{RCHO}-\text{TTAB}+{{\text{H}}^{-}}-\text{I}{{\text{r}}_{2}}\xrightarrow{{{\text{k}}_{1}}}\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{TTAB}+\text{I}{{\text{r}}_{2}}*$ | (e3’) RDS |
$\text{RC}{{\text{H}}_{2}}{{\text{O}}^{-}}-\text{TTAB}+{{\text{H}}^{+}}\xrightarrow{{{\text{k}}_{2}}}\text{RC}{{\text{H}}_{2}}\text{OH}-\text{I}{{\text{r}}_{1}}$ | (4’) |
$\text{RC}{{\text{H}}_{2}}\text{OH}-\text{TTAB}\overset{{{\text{K}}_{\text{CROL}}}^{-1}}{\longleftrightarrow}\text{RC}{{\text{H}}_{2}}\text{OH+TTAB}*$ | (5’) |
RCHO + H2 → RCH2OH | overall reaction |
$\text{r=k}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{/ }\!\![\!\!\text{ (1+}{{\text{K}}_{\text{CRAL}}}{{\text{P}}_{\text{CRAL}}}+{{\text{K}}_{\text{CROL}}}{{\text{P}}_{\text{CROL}}}\text{)(1+}{{\text{K}}_{{{\text{H}}_{\text{2}}}}}{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{) }\!\!]\!\!\text{ }$ TTAB*: site for CRAL (RCHO) adsorption; Ir2*: site for H2 adsorption | rate expression |
*: Eqs. (1’)-(6’) only represent those on Ir-TTAB interfacial sites. |
Fig. 5. (a) FTIR spectra of CRAL adsorption on various catalysts after N2 purge for 60 min. (b) FTIR spectra of CRAL desorption on Ir/BN-C3 catalyst at elevated temperature in N2 purge. (c) In-situ FTIR spectra of CRAL hydrogenation over Ir/BN-C3 catalyst at elevated temperature.
|
[1] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[2] | Dan-Qing Liu, Bingxing Zhang, Guoqiang Zhao, Jian Chen, Hongge Pan, Wenping Sun. Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 93-120. |
[3] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[4] | Bo Lin, Mengyang Xia, Baorong Xu, Ben Chong, Zihao Chen, Guidong Yang. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review [J]. Chinese Journal of Catalysis, 2022, 43(8): 2141-2172. |
[5] | Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device [J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986. |
[6] | Hai-Sheng Su, Xiaoxia Chang, Bingjun Xu. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives [J]. Chinese Journal of Catalysis, 2022, 43(11): 2757-2771. |
[7] | Huiyan Zeng, Yanquan Zeng, Jun Qi, Long Gu, Enna Hong, Rui Si, Chunzhen Yang. The role of proton dynamics on the catalyst-electrolyte interface in the oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(1): 139-147. |
[8] | Xue-Peng Zhang, Hong-Yan Wang, Haoquan Zheng, Wei Zhang, Rui Cao. O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1253-1268. |
[9] | Bin Huang, Yifan Wu, Bibo Chen, Yong Qian, Naigen Zhou, Neng Li. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations [J]. Chinese Journal of Catalysis, 2021, 42(7): 1160-1167. |
[10] | Fangjun Shao, Zihao Yao, Yijing Gao, Qiang Zhou, Zhikang Bao, Guilin Zhuang, Xing Zhong, Chuan Wu, Zhongzhe Wei, Jianguo Wang. Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes [J]. Chinese Journal of Catalysis, 2021, 42(7): 1185-1194. |
[11] | Jia Wang, Rui You, Kun Qian, Yang Pan, Jiuzhong Yang, Weixin Huang. Effect of the modification of alumina supports with chloride on the structure and catalytic performance of Ag/Al2O3 catalysts for the selective catalytic reduction of NOx with propene and H2/propene [J]. Chinese Journal of Catalysis, 2021, 42(12): 2242-2253. |
[12] | Ye He, Jieyuan Li, Kanglu Li, Minglu Sun, Chaowei Yuan, Ruimin Chen, Jianping Sheng, Geng Leng, Fan Dong. Bi quantum dots implanted 2D C-doped BiOCl nanosheets: Enhanced visible light photocatalysis efficiency and reaction pathway [J]. Chinese Journal of Catalysis, 2020, 41(9): 1430-1438. |
[13] | Ruimin Chen, Hong Wang, Huizhong Wu, Jianping Sheng, Jieyuan Li, Wen Cui, Fan Dong. SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activity, and reaction mechanism [J]. Chinese Journal of Catalysis, 2020, 41(4): 710-718. |
[14] | WANG Xiang, WANG Dong, WAN Lijun. Investigation of surface processes in electrocatalysis by scanning tunneling microscopy [J]. Chinese Journal of Catalysis, 2019, 40(s1): 11-16. |
[15] | XU Jun, WANG Qiang, DENG Feng. Solid-State NMR Spectroscopy in Catalysis: Progress and Perspective [J]. Chinese Journal of Catalysis, 2019, 40(s1): 30-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||