Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (7): 1126-1136.DOI: 10.1016/S1872-2067(20)63732-9
• Articles • Previous Articles Next Articles
Sen Wanga, Zhikai Lia, Zhangfeng Qina,*(), Mei Donga, Junfen Lia, Weibin Fana,#(
), Jianguo Wanga,b,$(
)
Received:
2020-09-14
Accepted:
2020-11-10
Online:
2021-07-18
Published:
2020-12-10
Contact:
Zhangfeng Qin,Weibin Fan,Jianguo Wang
About author:
$ Tel: +86-351-4199009; E-mail: iccjgw@sxicc.ac.cnSupported by:
Sen Wang, Zhikai Li, Zhangfeng Qin, Mei Dong, Junfen Li, Weibin Fan, Jianguo Wang. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion[J]. Chinese Journal of Catalysis, 2021, 42(7): 1126-1136.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63732-9
Fig. 1. 120T cluster models illustrating the intersection cavities, sinusoidal channels, and straight channels (T12, T10, and T8 sites, respectively) of H-ZSM-5 zeolite (Si, yellow; O, red; Al, pink; and H, white). Schematic topological structure of H-ZSM-5 zeolite. Methanol-to-olefins conversion reaction network including aromatic and alkene cycles following the dual-cycle hydrocarbons pool mechanism.
Fig. 3. Free energy profiles of (a) ethene (e) and (b) propene (p) formation via the aromatic cycle at 723 K during methanol-to-olefins conversion at the acid sites in the intersection cavities, sinusoidal channels, and straight channels of H-ZSM-5 zeolite. A1 and A2 denote the adsorption of methanol and co-adsorption of p-xylene, respectively, M1-M3 denote methylation reactions, D1 and D2 denote deprotonation reactions, S1-S4 denote alkyl side-chain shifting reactions, and E1 denotes olefin elimination reaction.
Step | ΔGint≠ (kJ mol-1) | k (s-1) | ΔGR (kJ mol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T12 | T10 | T8 | T12 | T10 | T8 | T12 | T10 | T8 | |||
Ethene (e) formation | |||||||||||
M1 | 140 | 141 | 171 | 1.17 × 103 | 1.04 × 103 | 6.11 × 100 | 57 | 60 | 107 | ||
M2 | 126 | 136 | 135 | 1.23 × 104 | 3.01 × 103 | 3.01 × 103 | -29 | -8 | -32 | ||
D1 | 91 | 58 | 58 | 3.87 × 106 | 9.65 × 108 | 9.75 × 108 | 39 | 41 | 32 | ||
S1(e) | 50 | 37 | 76 | 3.74 × 109 | 2.96 × 1010 | 4.73 × 107 | -30 | -39 | -13 | ||
S2(e) | 80 | 60 | 101 | 2.68 × 107 | 6.70 × 108 | 7.97 × 105 | -16 | -2 | -1 | ||
S3(e) | 114 | 115 | 117 | 8.64 × 104 | 6.75 × 104 | 5.32 × 104 | 52 | -6 | 36 | ||
S4(e) | 70 | 53 | 58 | 1.37 × 108 | 2.12 × 109 | 9.92 × 108 | -45 | -28 | -34 | ||
E1(e) | 103 | 106 | 122 | 5.47 × 105 | 3.38 × 105 | 2.50 × 104 | -4 | -7 | -16 | ||
Propene (p) formation | |||||||||||
M3 | 114 | 124 | 138 | 8.91 × 104 | 1.64 × 104 | 1.50 × 103 | -30 | -69 | -47 | ||
D2 | 81 | 77 | 53 | 2.03 × 107 | 4.03 × 107 | 2.25 × 109 | 57 | 49 | 22 | ||
S1(p) | 57 | 36 | 74 | 1.05 × 109 | 4.02 × 1010 | 7.05 × 107 | -17 | -44 | -27 | ||
S2(p) | 82 | 78 | 82 | 1.92 × 107 | 3.34 × 107 | 1.85 × 107 | 7 | 22 | 5 | ||
S3(p) | 75 | 70 | 135 | 5.51 × 107 | 1.32 × 108 | 2.85 × 103 | 28 | 36 | 63 | ||
S4(p) | 27 | 42 | 58 | 1.67 × 1011 | 1.32 × 1010 | 9.68 × 108 | -8 | 6 | -54 | ||
E1(p) | 30 | 25 | 46 | 9.52 × 1010 | 2.34 × 1011 | 7.10 × 109 | -43 | -58 | -60 | ||
AFE * | 280 | 293 | 294 |
Table 1 Calculated free energy barrier (ΔGint≠), rate constant (k), and reaction free energy (ΔGR) of each reaction step for the formation of ethene and propene via the aromatic cycle of methanol-to-olefins conversion at the acid sites in the intersection cavities (T12), sinusoidal channels (T10), and straight channels (T8) of H-ZSM-5 zeolite at 723 K.
Step | ΔGint≠ (kJ mol-1) | k (s-1) | ΔGR (kJ mol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T12 | T10 | T8 | T12 | T10 | T8 | T12 | T10 | T8 | |||
Ethene (e) formation | |||||||||||
M1 | 140 | 141 | 171 | 1.17 × 103 | 1.04 × 103 | 6.11 × 100 | 57 | 60 | 107 | ||
M2 | 126 | 136 | 135 | 1.23 × 104 | 3.01 × 103 | 3.01 × 103 | -29 | -8 | -32 | ||
D1 | 91 | 58 | 58 | 3.87 × 106 | 9.65 × 108 | 9.75 × 108 | 39 | 41 | 32 | ||
S1(e) | 50 | 37 | 76 | 3.74 × 109 | 2.96 × 1010 | 4.73 × 107 | -30 | -39 | -13 | ||
S2(e) | 80 | 60 | 101 | 2.68 × 107 | 6.70 × 108 | 7.97 × 105 | -16 | -2 | -1 | ||
S3(e) | 114 | 115 | 117 | 8.64 × 104 | 6.75 × 104 | 5.32 × 104 | 52 | -6 | 36 | ||
S4(e) | 70 | 53 | 58 | 1.37 × 108 | 2.12 × 109 | 9.92 × 108 | -45 | -28 | -34 | ||
E1(e) | 103 | 106 | 122 | 5.47 × 105 | 3.38 × 105 | 2.50 × 104 | -4 | -7 | -16 | ||
Propene (p) formation | |||||||||||
M3 | 114 | 124 | 138 | 8.91 × 104 | 1.64 × 104 | 1.50 × 103 | -30 | -69 | -47 | ||
D2 | 81 | 77 | 53 | 2.03 × 107 | 4.03 × 107 | 2.25 × 109 | 57 | 49 | 22 | ||
S1(p) | 57 | 36 | 74 | 1.05 × 109 | 4.02 × 1010 | 7.05 × 107 | -17 | -44 | -27 | ||
S2(p) | 82 | 78 | 82 | 1.92 × 107 | 3.34 × 107 | 1.85 × 107 | 7 | 22 | 5 | ||
S3(p) | 75 | 70 | 135 | 5.51 × 107 | 1.32 × 108 | 2.85 × 103 | 28 | 36 | 63 | ||
S4(p) | 27 | 42 | 58 | 1.67 × 1011 | 1.32 × 1010 | 9.68 × 108 | -8 | 6 | -54 | ||
E1(p) | 30 | 25 | 46 | 9.52 × 1010 | 2.34 × 1011 | 7.10 × 109 | -43 | -58 | -60 | ||
AFE * | 280 | 293 | 294 |
Fig. 4. Free energy profiles for propene formation via the alkene cycle of methanol-to-olefins conversion at the acid sites in the intersection cavities, sinusoidal channels, and straight channels of H-ZSM-5 zeolite at 723 K. A1 and A2 denote the adsorption of methanol and co-adsorption of propene, respectively, M1-M3 denote methylation reactions, D1 and D2 denote deprotonation reactions, and E1 denotes propene elimination reaction.
Step | ΔGint≠ (kJ mol-1) | k (s-1) | ΔGR (kJ mol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T12 | T10 | T8 | T12 | T10 | T8 | T12 | T10 | T8 | |||
M1 | 123 | 122 | 134 | 1.94 × 104 | 2.30 × 104 | 3.08 × 103 | 38 | 25 | -17 | ||
M2 | 129 | 120 | 131 | 7.17 × 103 | 2.97 × 104 | 5.11 × 103 | 27 | 32 | -15 | ||
M3 | 138 | 137 | 130 | 1.73 × 103 | 2.02 × 103 | 6.07 × 103 | 32 | 38 | -29 | ||
D1 | 56 | 30 | 39 | 1.45 × 109 | 1.06 × 1011 | 2.26 × 1010 | -24 | -37 | -54 | ||
D2 | 66 | 13 | 17 | 2.71 × 108 | 1.73 × 1012 | 9.06 × 1011 | -14 | -38 | -49 | ||
E1 | 109 | 100 | 118 | 1.95 × 105 | 9.66 × 105 | 4.74 × 104 | 39 | 43 | 66 | ||
E2 | 156 | 166 | 161 | 8.97 × 101 | 1.41 × 101 | 3.51 × 101 | 104 | 74 | 60 | ||
AFE * | 200 | 208 | 209 |
Table 2 Calculated free energy barrier (ΔGint≠), rate constant (k) and reaction free energy (ΔGR) for each reaction step of the formation of ethene and propene via the alkene cycle of methanol-to-olefins conversion at the acid sites in the intersection cavities (T12), sinusoidal channels (T10), and straight channels (T8) of H-ZSM-5 zeolite at 723 K.
Step | ΔGint≠ (kJ mol-1) | k (s-1) | ΔGR (kJ mol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T12 | T10 | T8 | T12 | T10 | T8 | T12 | T10 | T8 | |||
M1 | 123 | 122 | 134 | 1.94 × 104 | 2.30 × 104 | 3.08 × 103 | 38 | 25 | -17 | ||
M2 | 129 | 120 | 131 | 7.17 × 103 | 2.97 × 104 | 5.11 × 103 | 27 | 32 | -15 | ||
M3 | 138 | 137 | 130 | 1.73 × 103 | 2.02 × 103 | 6.07 × 103 | 32 | 38 | -29 | ||
D1 | 56 | 30 | 39 | 1.45 × 109 | 1.06 × 1011 | 2.26 × 1010 | -24 | -37 | -54 | ||
D2 | 66 | 13 | 17 | 2.71 × 108 | 1.73 × 1012 | 9.06 × 1011 | -14 | -38 | -49 | ||
E1 | 109 | 100 | 118 | 1.95 × 105 | 9.66 × 105 | 4.74 × 104 | 39 | 43 | 66 | ||
E2 | 156 | 166 | 161 | 8.97 × 101 | 1.41 × 101 | 3.51 × 101 | 104 | 74 | 60 | ||
AFE * | 200 | 208 | 209 |
Step | ΔGint≠ (kJ mol-1) | k (s-1) | ΔGR (kJ mol-1) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T12 | T10 | T8 | T12 | T10 | T8 | T12 | T10 | T8 | ||||||||||||||||||
Benzene formation | ||||||||||||||||||||||||||
D1 | 58 | 52 | 32 | 9.04 × 108 | 2.68 × 109 | 7.84 × 1010 | -9 | 5 | -49 | |||||||||||||||||
HT1 | 136 | 159 | 166 | 2.43 × 103 | 5.15 × 101 | 1.58 × 101 | 90 | 107 | 138 | |||||||||||||||||
C1 | 75 | 73 | 96 | 5.57 × 107 | 7.88 × 107 | 1.79 × 106 | -44 | -11 | 24 | |||||||||||||||||
D2 | 16 | 23 | 30 | 1.09 × 1012 | 3.17 × 1011 | 1.07 × 1011 | -46 | -39 | -71 | |||||||||||||||||
HT2 | 137 | 138 | 148 | 1.80 × 103 | 1.63 × 103 | 3.09 × 102 | -41 | -1 | -11 | |||||||||||||||||
D3 | 33 | 38 | 25 | 6.25 × 1010 | 2.64 × 1010 | 2.39 × 1011 | -3 | -9 | -30 | |||||||||||||||||
HT3 | 122 | 121 | 132 | 2.43 × 104 | 2.78 × 104 | 4.54 × 103 | -109 | -86 | -78 | |||||||||||||||||
D4 | 2 | 17 | 16 | 1.14 × 1013 | 9.31 × 1011 | 1.13 × 1012 | -93 | -100 | -115 | |||||||||||||||||
AFE* | 293 | 311 | 337 | |||||||||||||||||||||||
PolyMBs formation | ||||||||||||||||||||||||||
M1 | 175 | 161 | 166 | 3.71 × 100 | 3.59 × 101 | 1.52 × 101 | 75 | -16 | 86 | |||||||||||||||||
M2 | 157 | 162 | 126 | 7.39 × 101 | 2.86 × 101 | 1.24 × 104 | 59 | 61 | 46 | |||||||||||||||||
M3 | 161 | 135 | 140 | 3.80 × 101 | 2.81 × 101 | 1.20 × 103 | 79 | 59 | 92 | |||||||||||||||||
M4 | 159 | 149 | 168 | 5.13 × 101 | 2.73 × 102 | 1.06 × 101 | 20 | 26 | 30 | |||||||||||||||||
M5 | 149 | 151 | 170 | 2.73 × 102 | 1.70 × 102 | 7.77 × 100 | 15 | 20 | 19 | |||||||||||||||||
M6 | 153 | 186 | 227 | 1.37 × 102 | 5.21 × 10-1 | 5.70 × 10-4 | 16 | 43 | 21 |
Table 3 Calculated free energy barrier (ΔGint≠), rate constant (k), and reaction free energy (ΔGR) for each reaction step of the formation of benzene via aromatization and the formation of polymethylbenzenes (polyMBs) via successive methylations of benzene at the acid sites in the intersection cavities (T12), sinusoidal channels (T10), and straight channels (T8) of H-ZSM-5 zeolite at 723 K.
Step | ΔGint≠ (kJ mol-1) | k (s-1) | ΔGR (kJ mol-1) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T12 | T10 | T8 | T12 | T10 | T8 | T12 | T10 | T8 | ||||||||||||||||||
Benzene formation | ||||||||||||||||||||||||||
D1 | 58 | 52 | 32 | 9.04 × 108 | 2.68 × 109 | 7.84 × 1010 | -9 | 5 | -49 | |||||||||||||||||
HT1 | 136 | 159 | 166 | 2.43 × 103 | 5.15 × 101 | 1.58 × 101 | 90 | 107 | 138 | |||||||||||||||||
C1 | 75 | 73 | 96 | 5.57 × 107 | 7.88 × 107 | 1.79 × 106 | -44 | -11 | 24 | |||||||||||||||||
D2 | 16 | 23 | 30 | 1.09 × 1012 | 3.17 × 1011 | 1.07 × 1011 | -46 | -39 | -71 | |||||||||||||||||
HT2 | 137 | 138 | 148 | 1.80 × 103 | 1.63 × 103 | 3.09 × 102 | -41 | -1 | -11 | |||||||||||||||||
D3 | 33 | 38 | 25 | 6.25 × 1010 | 2.64 × 1010 | 2.39 × 1011 | -3 | -9 | -30 | |||||||||||||||||
HT3 | 122 | 121 | 132 | 2.43 × 104 | 2.78 × 104 | 4.54 × 103 | -109 | -86 | -78 | |||||||||||||||||
D4 | 2 | 17 | 16 | 1.14 × 1013 | 9.31 × 1011 | 1.13 × 1012 | -93 | -100 | -115 | |||||||||||||||||
AFE* | 293 | 311 | 337 | |||||||||||||||||||||||
PolyMBs formation | ||||||||||||||||||||||||||
M1 | 175 | 161 | 166 | 3.71 × 100 | 3.59 × 101 | 1.52 × 101 | 75 | -16 | 86 | |||||||||||||||||
M2 | 157 | 162 | 126 | 7.39 × 101 | 2.86 × 101 | 1.24 × 104 | 59 | 61 | 46 | |||||||||||||||||
M3 | 161 | 135 | 140 | 3.80 × 101 | 2.81 × 101 | 1.20 × 103 | 79 | 59 | 92 | |||||||||||||||||
M4 | 159 | 149 | 168 | 5.13 × 101 | 2.73 × 102 | 1.06 × 101 | 20 | 26 | 30 | |||||||||||||||||
M5 | 149 | 151 | 170 | 2.73 × 102 | 1.70 × 102 | 7.77 × 100 | 15 | 20 | 19 | |||||||||||||||||
M6 | 153 | 186 | 227 | 1.37 × 102 | 5.21 × 10-1 | 5.70 × 10-4 | 16 | 43 | 21 |
Fig. 5. Free energy profiles for the formation of (a) benzene and (b) polymethylbenzenes via the successive methylations of the benzene ring during methanol-to-olefins conversion at the acid sites in the intersection cavities, sinusoidal channels, and straight channels of H-ZSM-5 zeolite at 723 K. Here, D1-D4 denote deprotonation reactions, HT1-HT3 denote hydride transfer reactions, C1 denotes cyclization of olefin carbenium ion, and M1-M6 denote benzene ring methylation reactions.
Fig. 6. Contour lines for the diffusion of (a) methanol, (b) propene, (c) p-xylene, and (d) hexamethylbenzene molecules in the straight and sinusoidal channels of H-ZSM-5 zeolite at 723 K. The density maps were constructed according to the two-dimensional projections of the mass centers of guest molecules in a 2 × 2 × 2 supercell. The color bars represent the density of guest molecules distributed in different channels with the unit of 1; the red areas with higher density values indicate higher diffusion probability.
|
[1] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[2] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[3] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[4] | Bin Huang, Yifan Wu, Bibo Chen, Yong Qian, Naigen Zhou, Neng Li. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations [J]. Chinese Journal of Catalysis, 2021, 42(7): 1160-1167. |
[5] | Qian Wu, Qingping Gao, Limei Sun, Huanmei Guo, Xishi Tai, Dan Li, Li Liu, Chongyi Ling, Xuping Sun. Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(3): 482-489. |
[6] | Renyang Zheng, Zaiku Xie. Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2141-2148. |
[7] | Xiaoxu Ma, Mong-Feng Chiou, Liang Ge, Xiaoyan Li, Yajun Li, Li Wu, Hongli Bao. Iron phthalocyanine-catalyzed radical phosphinoylazidation of alkenes: A facile synthesis of β-azido-phosphine oxide with a fast azido transfer step [J]. Chinese Journal of Catalysis, 2021, 42(10): 1634-1640. |
[8] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. Lattice oxygen activation in transition metal doped ceria [J]. Chinese Journal of Catalysis, 2020, 41(6): 977-984. |
[9] | Bing Han, Rui Lang, Hailian Tang, Jia Xu, Xiang-Kui Gu, Botao Qiao, Jingyue(Jimmy) Liu. Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation [J]. Chinese Journal of Catalysis, 2019, 40(12): 1847-1853. |
[10] | Chang Huang, Zhi-Qiang Wang, Xue-Qing Gong. Activity and selectivity of propane oxidative dehydrogenation over VO3/CeO2(111) catalysts: A density functional theory study [J]. Chinese Journal of Catalysis, 2018, 39(9): 1520-1526. |
[11] | Chuan-Ming Wang, Yang-Dong Wang, Zai-Ku Xie. Elucidating the dominant reaction mechanism of methanol-to-olefins conversion in H-SAPO-18: A first-principles study [J]. Chinese Journal of Catalysis, 2018, 39(7): 1272-1279. |
[12] | Kezhen Qi, Shu-yuan Liu, Meng Qiu. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects [J]. Chinese Journal of Catalysis, 2018, 39(4): 867-875. |
[13] | SuHong Zhong, Guanzhong Lu, XueQing Gong. A DFT+U study of the structures and reactivities of polar CeO2(100) surfaces [J]. Chinese Journal of Catalysis, 2017, 38(7): 1138-1147. |
[14] | Chuan-Ming Wang, Yang-Dong Wang, Hong-Xing Liu, Guang Yang, Yu-Jue Du, Zai-Ku Xie. Aromatic-based hydrocarbon pool mechanism for methanol-to-olefins conversion in H-SAPO-18: A van der Waals density functional study [J]. Chinese Journal of Catalysis, 2015, 36(9): 1573-1579. |
[15] | Wangcheng Zhan, Yun Guo, Xueqing Gong, Yanglong Guo, Yanqing Wang, Guanzhong Lu. Current status and perspectives of rare earth catalytic materials and catalysis [J]. Chinese Journal of Catalysis, 2014, 35(8): 1238-1250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||