Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (10): 1634-1640.DOI: 10.1016/S1872-2067(21)63847-0
• Communications • Previous Articles Next Articles
Xiaoxu Maa,b, Mong-Feng Chioua, Liang Gea, Xiaoyan Lia, Yajun Lia, Li Wub, Hongli Baoa,c()
Received:
2021-05-21
Accepted:
2021-05-22
Online:
2021-06-20
Published:
2021-06-20
Contact:
Hongli Bao
Supported by:
Xiaoxu Ma, Mong-Feng Chiou, Liang Ge, Xiaoyan Li, Yajun Li, Li Wu, Hongli Bao. Iron phthalocyanine-catalyzed radical phosphinoylazidation of alkenes: A facile synthesis of β-azido-phosphine oxide with a fast azido transfer step[J]. Chinese Journal of Catalysis, 2021, 42(10): 1634-1640.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63847-0
Entry | Variation from “standard conditions” | Yield (%) b |
---|---|---|
1 | Standard reaction conditions a | 84 |
2 c | Fe(OTf)2 instead of PcFe | 27 d |
3 c | AgNO3 instead of PcFe | trace d |
4 c | AgOTf instead of PcFe | trace d |
5 c | Mn(OAc)2·4H2O instead of PcFe | trace d |
6 | 40 oC instead of rt | 43 |
7 | 70 oC instead of rt | 11 |
8 | THF instead of CH3CN | 17 |
9 | PhCl instead of CH3CN | 56 |
10 | 1,4-Dioxane instead of CH3CN | 49 |
11 | LPO instead of TBHP | 78 |
12 | NFSI instead of TBHP | 0 |
13 e | 5 mmol reaction | 87 |
Table 1 Optimization of the reaction conditions. a
Entry | Variation from “standard conditions” | Yield (%) b |
---|---|---|
1 | Standard reaction conditions a | 84 |
2 c | Fe(OTf)2 instead of PcFe | 27 d |
3 c | AgNO3 instead of PcFe | trace d |
4 c | AgOTf instead of PcFe | trace d |
5 c | Mn(OAc)2·4H2O instead of PcFe | trace d |
6 | 40 oC instead of rt | 43 |
7 | 70 oC instead of rt | 11 |
8 | THF instead of CH3CN | 17 |
9 | PhCl instead of CH3CN | 56 |
10 | 1,4-Dioxane instead of CH3CN | 49 |
11 | LPO instead of TBHP | 78 |
12 | NFSI instead of TBHP | 0 |
13 e | 5 mmol reaction | 87 |
Fig. 8. Transition states of azide transfer refer to through internal and terminal nitrogen, Ni and Nt, on triplet and quintet surfaces. Spin density isosurfaces of 3TS3-Ni and 5TS3-Nt are displayed.
|
[1] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[2] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[3] | Peng-Zi Wang, Wen-Jing Xiao, Jia-Rong Chen. Recent advances in radical-mediated transformations of 1,3-dienes [J]. Chinese Journal of Catalysis, 2022, 43(3): 548-557. |
[4] | Anuj Kumar, Ying Zhang, Yin Jia, Wen Liu, Xiaoming Sun. Redox chemistry of N4-Fe 2+ in iron phthalocyanines for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(8): 1404-1412. |
[5] | Bin Huang, Yifan Wu, Bibo Chen, Yong Qian, Naigen Zhou, Neng Li. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations [J]. Chinese Journal of Catalysis, 2021, 42(7): 1160-1167. |
[6] | Sen Wang, Zhikai Li, Zhangfeng Qin, Mei Dong, Junfen Li, Weibin Fan, Jianguo Wang. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion [J]. Chinese Journal of Catalysis, 2021, 42(7): 1126-1136. |
[7] | Qian Wu, Qingping Gao, Limei Sun, Huanmei Guo, Xishi Tai, Dan Li, Li Liu, Chongyi Ling, Xuping Sun. Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(3): 482-489. |
[8] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. Lattice oxygen activation in transition metal doped ceria [J]. Chinese Journal of Catalysis, 2020, 41(6): 977-984. |
[9] | Xiang Ren, Zhan Lu. Visible light promoted difunctionalization reactions of alkynes [J]. Chinese Journal of Catalysis, 2019, 40(7): 1003-1019. |
[10] | Bing Han, Rui Lang, Hailian Tang, Jia Xu, Xiang-Kui Gu, Botao Qiao, Jingyue(Jimmy) Liu. Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation [J]. Chinese Journal of Catalysis, 2019, 40(12): 1847-1853. |
[11] | Chang Huang, Zhi-Qiang Wang, Xue-Qing Gong. Activity and selectivity of propane oxidative dehydrogenation over VO3/CeO2(111) catalysts: A density functional theory study [J]. Chinese Journal of Catalysis, 2018, 39(9): 1520-1526. |
[12] | Kezhen Qi, Shu-yuan Liu, Meng Qiu. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects [J]. Chinese Journal of Catalysis, 2018, 39(4): 867-875. |
[13] | SuHong Zhong, Guanzhong Lu, XueQing Gong. A DFT+U study of the structures and reactivities of polar CeO2(100) surfaces [J]. Chinese Journal of Catalysis, 2017, 38(7): 1138-1147. |
[14] | Wangcheng Zhan, Yun Guo, Xueqing Gong, Yanglong Guo, Yanqing Wang, Guanzhong Lu. Current status and perspectives of rare earth catalytic materials and catalysis [J]. Chinese Journal of Catalysis, 2014, 35(8): 1238-1250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||