Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (7): 1054-1077.DOI: 10.1016/S1872-2067(20)63722-6
• Reviews • Previous Articles Next Articles
Yipu Liua, Xiao Lianga, Hui Chena, Ruiqin Gaoa,b, Lei Shia, Lan Yanga, Xiaoxin Zoua,*()
Received:
2020-08-27
Accepted:
2020-10-13
Online:
2021-07-18
Published:
2020-12-10
Contact:
Xiaoxin Zou
Supported by:
Yipu Liu, Xiao Liang, Hui Chen, Ruiqin Gao, Lei Shi, Lan Yang, Xiaoxin Zou. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chinese Journal of Catalysis, 2021, 42(7): 1054-1077.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63722-6
Fig. 2. Schematic illustration of (a) typical AEM scheme, (b) scaling relationship among M-OH, M-O and M-OOH, (c) a volcano plot using descriptor to represent the catalytic activity trend. (d) The volcano plot between catalytic activities and ΔGO - ΔGOH. Reproduced with permission [36]. Copyright 2011, Wiley-VCH. (e) The volcano plot between catalytic activities and eg electron. Reproduced with permission [38]. Copyright 2011, American Association for the Advancement of Science. (f) The relationship between p-state center and oxygen adsorption energy for cubic ABO3 oxides. Reproduced with permission. Copyright 2018, Royal Society of Chemistry [39].
Fig. 3. (a) Schematic illustration of three possible LOM schemes. (b) APT data of the near-surface region of hydrous Ir16Ox. (c) Local mass spectrum of oxide cluster in (b). (b,c) Reproduced with permission [42]. Copyright 2019, Royal Society of Chemistry. (d) Colored HRTEM image of La2LiIrO6 after 50 CV measurements. (e) XAS spectra of pristine La2LiIrO6, La2LiIrO6 after oxidation and IrO2. (d,e) Reproduced with permission [43]. Copyright 2017, Nature Publishing Group.
Fig. 4. (a) A polarization curve for OER. η10 is the overpotential at 10 mA/cm2. (b) A Tafel plot converted from (a). The red dashed line depicts the least potential deviation for determining the linear region. (c) Schematic diagrams of Tafel plot analysis for two specific catalysts. (d) CV plots with different scan rates under the non-Faradic range. (e) A linear trend conducted from the difference of ?j against different scan rates. (f) CV plot of SrZrO3-SrIrO3 solid solution at a potential region of 0.4-1.4 V vs. RHE.
Fig. 5. (a) The inverse relationship between the stabilities of monometallic oxides and their reactivities for OER. Reproduced with permission [56]. Copyright 2014, American Chemical Society. (b) Stability number presented for iridium containing catalysts in thin film or powder form. (c) Stability number plotted versus mass specific current density for some iridium containing powder catalysts. (b,c) Reproduced with permission [60]. Copyright 2018, Nature Publishing Group. (d) The activity stability factor (ASF) for Ir-poly and dft-Ir25Os75. Reproduced under the terms of the Creative Commons Attribution License.
Fig. 6. Iridium dissolution profiles for (a) Ir black (red), electrochemically oxidized iridium (blue) and (b) thermally prepared IrO2 when cycling the catalysts from 0.05 to 1.2 V. (a,b) Reproduced with permission [62]. Copyright 2017, American Chemical Society. (c) CV curves (left axis) and Ir oxidation state value at applied potentials (right axis) of EIROF. Reproduced with permission [65]. Copyright 2014, Royal Society of Chemistry. Ir 4f (d) and O 1s (e) XPS spectrum under open circuit and oxygen evolution conditions. (d,e) Reproduced with permission [66]. Copyright 2014, Wiley-VCH.
Fig. 7. (a) O K-edge spectra of IrO2 and amorphous IrOx. Reproduced with permission [67]. Copyright 2016, Royal Society of Chemistry. (b) O K-edge spectra of Ir-coated PEM during and after OER. (c) O K-edge spectra of Ir-coated PEM at successively applied potentials. (b,c) Reproduced with permission [69]. Copyright 2017, Royal Society of Chemistry.
Fig. 8. Dissolved Ru and Ir for (a) Ru@IrOx and (b) RuIrOx at different times. Reproduced with permission [71]. Copyright 2019, Elsevier. (c) Mass activity comparison between Ir0.7Ru0.3Ox (EC) and Ir0.7Ru0.3O2 (TT). Reproduced with permission [74]. Copyright 2017, Elsevier. (d) Schematic illustration of the Ni leaching from the surface of Ir-Ni mixed oxides. Reproduced with permission [75]. Copyright 2015, American Chemical Society. (e) Schematic illustration of catalytic sites in IrNiOx nanoparticles. Reproduced with permission [76]. Copyright 2018, Nature Publishing Group.
Fig. 9. (a) Crystal structure of 6H-SrIrO3. Reproduced with permission [87]. Copyright 2018, Nature Publishing Group. (b) Crystal structure of Ba3M’M’’2O9 triple perovskites. (c) XRD patterns of Ba3M’Ir2O9. (b,c) Reproduced with permission [91]. Copyright 2020, American Chemical Society. (d) The crystal structure and (e) electron location function (ELF) of 12L-perovskites (Ba4MIr3O12). (d,e) Reproduced with permission [90]. Copyright 2020, Elsevier. (f) The structure of Ruddlesden-Popper (RP) phases with (ABO3)n=1/(AO) formula. Reproduced with permission [93]. Copyright 2014, American Chemical Society. (g) Specific OER activity of Sr iridates in 0.1 M HClO4. Reproduced with permission [94]. Copyright 2017, American Chemical Society.
Catalyst | Structural information | Electrolyte solution | Mass loading (mg/cm2) | η at jgeo=10 mA/cmgeo2 (mV) | Specific activity | Mass fraction of dissolved ions | Ref. |
---|---|---|---|---|---|---|---|
IrOx/SrIrO3 | Orthorhombic perovskite | 0.5 M H2SO4 | — | 270-290 (AFM normalized) | 1.53 V ~12 mA/cmAFM2 | CV @30 min (ICP) Sr-30%-50% | [ |
Ba2PrIrO6 | Cubic perovskite | 0.1 M HClO4 | 0.95 | ~400 (~425 @1 h) | 1.53 V ~1 mA/cmECSA2 | 1.55 V @1 h (ICP) Ba-14.2% Ir-0.8% Pr-11.3% | [ |
Pr3IrO7 | Fluorite | 0.1 M HClO4 | 0.95 | — | 1.53 V ~0.1 mA/cmECSA2 | — | [ |
SrCo0.9Ir0.1O3-δ | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | ~330 | 1.53 V ~10 mA/cmBET2 | 10k cycles CV (ICP) Sr-64.11% Co-67.08% Ir-35.5% | [ |
Ir doped SrTiO3 | Cubic perovskite | 0.1 M HClO4 | 0.21 | 247 | 1.525 V 820 A/gIr 0.125 mA/cmECSA2 0.455 mA/cmBET2 | — | [ |
SrZrO3-SrIrO3 solid solution | Orthorhombic perovskite | 0.1 M HClO4 | 0.13 | 240 | 1.53 V 1540 A/gIr 0.22 mA/cmECSA2 1.2 mA/cmBET2 1.35 A/C | 10 mA/cmgeo2 @10h (ICP) Sr-12% Ir-1% | [ |
3C-SrIrO3 | Orthorhombic perovskite-3C | 0.5 M H2SO4 | 0.9 | 270 | 1.525 V 38 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-24% | [ |
6H-SrIrO3 | Monoclinic perovskite-6H | 0.5 M H2SO4 | 0.9 | 248 | 1.525 V 76 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-1% | [ |
Co-doped SrIrO3 (6H) | Monoclinic perovskite-6H | 0.1 M HClO4 | 0.45 | 235 | 1.525 V 286.7 A/gIr | 10 mA/cmgeo2 @1h (ICP) Sr-12% Co-0.5% Ir-0.1% | [ |
BaIrO3 polycrystalline particles | Monoclinic perovskite | 0.5 M H2SO4 | 0.5 | — | 1.58 V 90 A/goxide ~4 A/FECSA | 100-cycle CV (EDS) Ba-100% | [ |
La2LiIrO6 | Monoclinic perovskite | 0.1 M H2SO4 | 0.25 | ~300 | 1.53V ~40 A/goxide ~2.5 mA/cmBET2 | 1.65 V @10 min (XPS) Ir-26.7% La-94.5% Li-100% | [ |
Ba4PrIr3O12 | Monoclinic perovskite-12L | 0.1 M HClO4 | 0.562 | 278 | 1.55 V 145 A/gIr 2.63 mA/cmECSA2 | 10 mA/cmgeo2 @10 h (ICP) Ba-32% Pr-32% Ir-1.18% | [ |
Ba3TiIr2O9 | Hexagonal perovskite | 0.1 M HClO4 | 0.281 | 275 | 1.53 V 0.89 mA/cmECSA2 250 A/gIr | 10 mA/cmgeo2 @10 h (ICP) Ba-2.1% Ti-1.6% | [ |
Sr2IrO4 | Tetragonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 286 | 1.55 V 394 A/gIr 6.1 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-74% Ir-4% | [ |
Sr4IrO6 | Hexagonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 287 | 1.55 V 274 A/gIr 0.7 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-90% Ir-30% | [ |
Ca2IrO4 | Hexagonal perovskite | 0.1 M HClO4 | 0.20 | 370 | — | — | [ |
H3.6IrO4·3.7H2O | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | — | 1.53 V ~3.5 mA/cmBET2 | 1 mA/cmgeo2 @1 h (ICP) Ir-0.08% | [ |
Sr2CoIrO6 | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | 330 (BET normalized) | 1.55 V 3.5 mA/cmBET2 | 1 mA/cmBET2 @24 h (ICP) Sr-5% Co-4% Ir-2.8% | [ |
Sr2FeIrO6 | Triclinic perovskite | 0.1 M HClO4 | 0.255 | 420 (BET normalized) | 1.55 V 1.8 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-7% Fe-6% Ir-3% | [ |
Sr2Fe0.5Ir0.5O4 | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | 410 (BET normalized) | 1.55 V 2.5 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-4% Fe-6% Ir-8% | [ |
Pb2Ir2O6.5 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | ~470 | 1.55 V ~150 A/gIr cm-2 | — | [ |
Bi2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | 1.6 V ~30 A/gIr cm-2 | — | [ | |
Pr2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.285 | ~290 | 1.53 V 424.5 A/gIr | — | [ |
Kx≈0.25IrO2 | Monoclinic hollandite | 0.1 M HClO4 | 0.2 | 350 | 1.53 V 12.2 A/gIr | — | [ |
CaIrO3 | Cubic perovskite | 0.1 M HClO4 | 0.2 | — | 1.55 V 30 A/gIr | — | [ |
β-H2IrO3 | Orthorhombic | 0.1 M H2SO4 | 0.5 | 345 | 1.53 V 1.0 mA/cmBET2 | 50 h@1.55 V Ir-0.2 % | [ |
Table 1 List of structure information, measurement parameters and catalytic performances of complex iridium-based oxides.
Catalyst | Structural information | Electrolyte solution | Mass loading (mg/cm2) | η at jgeo=10 mA/cmgeo2 (mV) | Specific activity | Mass fraction of dissolved ions | Ref. |
---|---|---|---|---|---|---|---|
IrOx/SrIrO3 | Orthorhombic perovskite | 0.5 M H2SO4 | — | 270-290 (AFM normalized) | 1.53 V ~12 mA/cmAFM2 | CV @30 min (ICP) Sr-30%-50% | [ |
Ba2PrIrO6 | Cubic perovskite | 0.1 M HClO4 | 0.95 | ~400 (~425 @1 h) | 1.53 V ~1 mA/cmECSA2 | 1.55 V @1 h (ICP) Ba-14.2% Ir-0.8% Pr-11.3% | [ |
Pr3IrO7 | Fluorite | 0.1 M HClO4 | 0.95 | — | 1.53 V ~0.1 mA/cmECSA2 | — | [ |
SrCo0.9Ir0.1O3-δ | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | ~330 | 1.53 V ~10 mA/cmBET2 | 10k cycles CV (ICP) Sr-64.11% Co-67.08% Ir-35.5% | [ |
Ir doped SrTiO3 | Cubic perovskite | 0.1 M HClO4 | 0.21 | 247 | 1.525 V 820 A/gIr 0.125 mA/cmECSA2 0.455 mA/cmBET2 | — | [ |
SrZrO3-SrIrO3 solid solution | Orthorhombic perovskite | 0.1 M HClO4 | 0.13 | 240 | 1.53 V 1540 A/gIr 0.22 mA/cmECSA2 1.2 mA/cmBET2 1.35 A/C | 10 mA/cmgeo2 @10h (ICP) Sr-12% Ir-1% | [ |
3C-SrIrO3 | Orthorhombic perovskite-3C | 0.5 M H2SO4 | 0.9 | 270 | 1.525 V 38 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-24% | [ |
6H-SrIrO3 | Monoclinic perovskite-6H | 0.5 M H2SO4 | 0.9 | 248 | 1.525 V 76 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-1% | [ |
Co-doped SrIrO3 (6H) | Monoclinic perovskite-6H | 0.1 M HClO4 | 0.45 | 235 | 1.525 V 286.7 A/gIr | 10 mA/cmgeo2 @1h (ICP) Sr-12% Co-0.5% Ir-0.1% | [ |
BaIrO3 polycrystalline particles | Monoclinic perovskite | 0.5 M H2SO4 | 0.5 | — | 1.58 V 90 A/goxide ~4 A/FECSA | 100-cycle CV (EDS) Ba-100% | [ |
La2LiIrO6 | Monoclinic perovskite | 0.1 M H2SO4 | 0.25 | ~300 | 1.53V ~40 A/goxide ~2.5 mA/cmBET2 | 1.65 V @10 min (XPS) Ir-26.7% La-94.5% Li-100% | [ |
Ba4PrIr3O12 | Monoclinic perovskite-12L | 0.1 M HClO4 | 0.562 | 278 | 1.55 V 145 A/gIr 2.63 mA/cmECSA2 | 10 mA/cmgeo2 @10 h (ICP) Ba-32% Pr-32% Ir-1.18% | [ |
Ba3TiIr2O9 | Hexagonal perovskite | 0.1 M HClO4 | 0.281 | 275 | 1.53 V 0.89 mA/cmECSA2 250 A/gIr | 10 mA/cmgeo2 @10 h (ICP) Ba-2.1% Ti-1.6% | [ |
Sr2IrO4 | Tetragonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 286 | 1.55 V 394 A/gIr 6.1 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-74% Ir-4% | [ |
Sr4IrO6 | Hexagonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 287 | 1.55 V 274 A/gIr 0.7 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-90% Ir-30% | [ |
Ca2IrO4 | Hexagonal perovskite | 0.1 M HClO4 | 0.20 | 370 | — | — | [ |
H3.6IrO4·3.7H2O | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | — | 1.53 V ~3.5 mA/cmBET2 | 1 mA/cmgeo2 @1 h (ICP) Ir-0.08% | [ |
Sr2CoIrO6 | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | 330 (BET normalized) | 1.55 V 3.5 mA/cmBET2 | 1 mA/cmBET2 @24 h (ICP) Sr-5% Co-4% Ir-2.8% | [ |
Sr2FeIrO6 | Triclinic perovskite | 0.1 M HClO4 | 0.255 | 420 (BET normalized) | 1.55 V 1.8 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-7% Fe-6% Ir-3% | [ |
Sr2Fe0.5Ir0.5O4 | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | 410 (BET normalized) | 1.55 V 2.5 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-4% Fe-6% Ir-8% | [ |
Pb2Ir2O6.5 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | ~470 | 1.55 V ~150 A/gIr cm-2 | — | [ |
Bi2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | 1.6 V ~30 A/gIr cm-2 | — | [ | |
Pr2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.285 | ~290 | 1.53 V 424.5 A/gIr | — | [ |
Kx≈0.25IrO2 | Monoclinic hollandite | 0.1 M HClO4 | 0.2 | 350 | 1.53 V 12.2 A/gIr | — | [ |
CaIrO3 | Cubic perovskite | 0.1 M HClO4 | 0.2 | — | 1.55 V 30 A/gIr | — | [ |
β-H2IrO3 | Orthorhombic | 0.1 M H2SO4 | 0.5 | 345 | 1.53 V 1.0 mA/cmBET2 | 50 h@1.55 V Ir-0.2 % | [ |
Fig. 10. (a) The crystal structure of pyrochlore. Reproduced with permission [97]. Copyright 2017, American Chemical Society. (b) Valence band spectra of Pb-Ir, Bi-Ir pyrochlores and IrO2. (c) Schematic illustration of the broadening Ir-5d band induced by the distortion of octahedra. (b,c) Reproduced with permission [98]. Copyright 2016, Nature Publishing Group. (d) Electronic phase diagram and corresponding band structure of Ir 5d orbitals. (e) O K-edge XAS of different pyrochlores. (d,e) Reproduced with permission [99]. Copyright 2018, Wiley-VCH. (f) Geometric current density and iridium mass activity of the different pyrochlores. Reproduced with permission [100]. Copyright 2019, American Chemical Society.
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[3] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[4] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[5] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[6] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[7] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[8] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[9] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[10] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[11] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[12] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[14] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[15] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||