Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (9): 1561-1575.DOI: 10.1016/S1872-2067(20)63759-7
• Articles • Previous Articles Next Articles
Jinpeng Yin, Xin Jin, Hao Xu#(), Yejun Guan, Rusi Peng, Li Chen, Jingang Jiang, Peng Wu*(
)
Received:
2020-12-11
Accepted:
2021-01-11
Online:
2021-09-18
Published:
2021-05-16
Contact:
Hao Xu,Peng Wu
About author:
# E-mail: hxu@chem.ecnu.edu.cn;Supported by:
Jinpeng Yin, Xin Jin, Hao Xu, Yejun Guan, Rusi Peng, Li Chen, Jingang Jiang, Peng Wu. Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation[J]. Chinese Journal of Catalysis, 2021, 42(9): 1561-1575.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63759-7
Fig. 3. HR-TEM images of S-Ti-MWW (a,b) and Bf-Ti-MWW (c-f); Edge-on TEM image of Bf-Ti-MWW taken along the directions of [100] (g) and [001] (h); STEM-HAADF image of Bf-Ti-MWW (i) and the corresponding EDX mapping images for Si, O and Ti elements (j-l).
Catalyst | Si/Tib | Si/Bb | SSAc /m2 g-1 | Pore volume /cm3 g-1 | Mechanical strengthe /N cm-1 | H2O2/% | PO/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vmic.d | Vmeso. | conversion | efficiency | yield | selectivity | ||||||
P-Ti-MWW | 40 | 97 | 552 | 0.14 | 0.33 | — | 22.7 | 86.1 | 19.5 | 99.8 | |
S-Ti-MWW | 53 | 128 | 507 | 0.12 | 0.56 | 13.2 | 15.2 | 86.3 | 13.1 | 99.9 | |
Bf-Ti-MWW | 52 | 133 | 633 | 0.15 | 0.43 | 21.8 | 53.5 | 90.6 | 48.4 | 99.9 | |
RF-Ti-MWW | 52 | 248 | 638 | 0.15 | 0.65 | 25.3 | 65.1 | 93.9 | 61.1 | 99.9 |
Table 1 Physicochemical properties and catalytic performance for the propylene epoxidation of various titanosilicate catalysts.a
Catalyst | Si/Tib | Si/Bb | SSAc /m2 g-1 | Pore volume /cm3 g-1 | Mechanical strengthe /N cm-1 | H2O2/% | PO/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vmic.d | Vmeso. | conversion | efficiency | yield | selectivity | ||||||
P-Ti-MWW | 40 | 97 | 552 | 0.14 | 0.33 | — | 22.7 | 86.1 | 19.5 | 99.8 | |
S-Ti-MWW | 53 | 128 | 507 | 0.12 | 0.56 | 13.2 | 15.2 | 86.3 | 13.1 | 99.9 | |
Bf-Ti-MWW | 52 | 133 | 633 | 0.15 | 0.43 | 21.8 | 53.5 | 90.6 | 48.4 | 99.9 | |
RF-Ti-MWW | 52 | 248 | 638 | 0.15 | 0.65 | 25.3 | 65.1 | 93.9 | 61.1 | 99.9 |
Fig. 5. (a) H2O adsorption isotherms at 298 K; (b) FT-IR spectra in the region of hydroxyl stretching vibration for P-Ti-MWW (1), S-Ti-MWW (2) and Bf-Ti-MWW (3).
Fig. 8. CD3CN (a-c) or pyridine (d-f) adsorbed FT-IR spectra of P-Ti-MWW (a,d), S-Ti-MWW (b,e) and Bf-Ti-MWW (c,f) after evacuation at different temperatures. B: Br?nsted acid sites; L: Lewis acid sites; H: hydrogen-bonded pyridine.
Fig. 9. Dependence of turnover frequency of PO on methylphosphonic acid (MPA)-to-Ti ratio (H2O2 0.1 mol L-1, C3H6 0.4 MPa, solvent MeCN, temperature 313 K) (a), H2O2 concentration (C3H6 0.4 MPa, solvent MeCN, temperature 313 K) (b) and C3H6 pressure (H2O2 1.0 mol L-1, solvent MeCN, temperature 313 K) (c) over various catalysts; Kinetic curves fitted by Arrhenius equation in propylene epoxidation (d).
Fig. 10. Comparison of the lifetime of S-Ti-MWW (1 solid) and Bf-Ti-MWW (2, blank). Reaction conditions: C3=/H2O2 ratio = 3, 313 K, 2 MPa, WHSV (H2O2) = 0.3 h-1, WHSV (MeCN) = 6.5 h-1, WHSV (H2O) = 0.7 h-1.
Fig. 11. XRD patterns (a), N2 adsorption-desorption isotherms at 77 K (b), UV-Vis spectra (c), 19F MAS NMR spectra (d), Ti 2p XPS spectra (e) and 29Si MAS NMR spectra (f) of Bf-Ti-MWW (1) and RF-Ti-MWW (2).
Fig. 12. Dependence of the reaction rate of propylene (PE) epoxidation (left) and PO hydrolysis (right) on reaction temperature over Bf-Ti-MWW and RF-Ti-MWW.
Fig. 13. The stability of RF-Ti-MWW catalyst for the continuous liquid-phase propylene epoxidation in a fixed-bed reactor. Reaction conditions: temperature 313-333 K; C3=/H2O2 molar ratio, 3; pressure, 2 MPa; WHSV (H2O2), 0.35 h-1 and WHSV (MeCN), 2 h-1. X(H2O2), H2O2 conversion; S(PO), PO selectivity; Y(PO), PO yield; U(H2O2), H2O2 utilization efficiency.
|
[1] | Jianxin Feng, Xuan Li, Yucheng Luo, Zhifang Su, Maoling Zhong, Baolan Yu, Jianying Shi. Microenvironment regulation of Ru(bda)L2 catalyst incorporated in metal-organic framework for effective photo-driven water oxidation [J]. Chinese Journal of Catalysis, 2023, 48(5): 127-136. |
[2] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[3] | Syed Shoaib Ahmad Shah, Tayyaba Najam, Jiao Yang, Muhammad Sufyan Javed, Lishan Peng, Zidong Wei. Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(8): 2193-2201. |
[4] | Hao Xu, Wenwen Tian, Liping Xu, Xin Jin, Teng Xue, Li Chen, Mingyuan He, Peng Wu. Crossed intergrowth triggered TS-2 microsphere: Formation mechanism, modification and catalytic performance [J]. Chinese Journal of Catalysis, 2020, 41(7): 1109-1117. |
[5] | XU Hao, WU Peng. Recent Progress of Metallosilicate Catalysts in Environment-Friendly Selective Oxidation Reactions [J]. Chinese Journal of Catalysis, 2019, 40(s1): 51-56. |
[6] | Yiming Qiao, Zhilin Fan, Yanjiao Jiang, Na Li, Hao Dong, Ning He, Danhong Zhou. Structures and vibrational spectra of Ti-MWW zeolite upon adsorption of H2O and NH3: A density functional theory study [J]. Chinese Journal of Catalysis, 2015, 36(10): 1733-1741. |
[7] | Liyun Song, Zongcheng Zhan, Xiaojun Liu, Hong He, Wenge Qiu, Xuehong Zi. NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts [J]. Chinese Journal of Catalysis, 2014, 35(7): 1030-1035. |
[8] | DING Jiang-Hong, XU Le, XU Hao, WU Hai-Hong, LIU Yue-Ming, WU Peng. Highly Efficient Synthesis of Methyl Ethyl Ketone Oxime through Ammoximation over Ti-MOR Catalyst [J]. Chinese Journal of Catalysis, 2013, 34(1): 243-250. |
[9] | MU Xu-Hong, WANG Dian-Zhong, WANG Yong-Rui, LIN Min, CHENG Shi-Biao, SHU Xing-Tian. Nanosized molecular sieves as petroleum refining and petrochemical catalysts [J]. Chinese Journal of Catalysis, 2013, 34(1): 69-79. |
[10] | XIAO Li-Ping, YANG Jing, ZHOU Hui, CHEN Chun-Yu, SUN Shi-Ye, LOU Hui, ZHENG Xiao-Ming. Multi-step Dealumination and Incorporation of Titanium into the Framework of Natural Mordenite toward a Titanosilicate Catalyst [J]. Chinese Journal of Catalysis, 2012, 33(1): 199-204. |
[11] | REN Yuan-Hang, GU Min, HU Yi-Chen, YUE Bin, JIANG Lei, KONG Zu-Ping, HE He-Yong-b. Preparation and Photocatalytic Activity of Lanthanide Loaded Microporous Titanosilicate ETS-10 Catalysts [J]. Chinese Journal of Catalysis, 2012, 33(1): 123-128. |
[12] | XIE Wei;LIU Yueming;WANG Lingling;WU Peng*. Recent Advances in MWW-Type Titanosilicates [J]. Chinese Journal of Catalysis, 2010, 31(5): 502-513. |
[13] | YAO Mingkai;YANG Junxia;ZHAO Song;LIU Yueming*;WU Peng. Hydrogen Peroxide Decomposition Catalyzed by Ti-MWW in a Fixed-Bed Re-actor [J]. Chinese Journal of Catalysis, 2009, 30(7): 590-594. |
[14] | ZHANG Jing;LIU Yueming*;LI Ningning;WU Haihong;LI Xiaohong;XIE Wei;ZHAO Zhonglin;WU Peng*;HE Mingyuan. Synthesis of Propylene Carbonate on a Bifunctional Titanosilicate Modified with Quaternary Ammonium Halides [J]. Chinese Journal of Catalysis, 2008, 29(7): 589-591. |
[15] | YAO Mingkai;YANG Junxia;ZHAO Song;LIU Yueming*;WU Haihong;WU Peng. Study on Fixed-Bed Process of Epoxidation of Allyl Chloride Catalyzed by Ti-MWW [J]. Chinese Journal of Catalysis, 2008, 29(12): 1271-1276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||