Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (2): 271-278.DOI: 10.1016/S1872-2067(20)63639-7
• Articles • Previous Articles Next Articles
Yu Dinga,†, Bo-Qiang Miaob,†, Yue Zhaob, Fu-Min Lia, Yu-Cheng Jianga,#(), Shu-Ni Lia,*(
), Yu Chenb
Received:
2020-04-08
Accepted:
2020-05-13
Online:
2021-02-18
Published:
2021-01-21
Contact:
Yu-Cheng Jiang,Shu-Ni Li
About author:
#E-mail: jyc@snnu.edu.cn† These authors contributed to this work equally.
Supported by:
Yu Ding, Bo-Qiang Miao, Yue Zhao, Fu-Min Li, Yu-Cheng Jiang, Shu-Ni Li, Yu Chen. Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2021, 42(2): 271-278.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63639-7
Fig. 4. (A) LSV polarization curves of Ni(OH)2-Fe H-STs in 1 M KOH electrolyte at 2 mV s-1; (B) Histogram of η10 at Ni(OH)2-Fe H-STs; (C) Tafel plots of Ni(OH)2-Fe H-STs for the OER; (D) Nyquist plots in 1 M KOH electrolyte at 1.5 V for Ni(OH)2-Fe H-STs with different Ni/Fe ratios.
Fig. 5. SEM images of the NF substrate (A) and Ni(OH)2-Fe H-STs-Ni3Fe1/NF (B); (C) SEM-EDX-mapping images of Ni(OH)2-Fe H-STs-Ni3Fe1/NF; (D) partially magnified SEM image of Ni(OH)2-Fe H-STs-Ni3Fe1/NF.
Fig. 6. (A) LSV polarization curves of Ni(OH)2-Fe H-STs-Ni3Fe1/NF and RuO2/NF in 1 M KOH electrolyte at 2 mV s-1; (B) the OER overpotentials at 10 and 60 mA cm-2 for Ni(OH)2-Fe H-STs-Ni3Fe1/NF and RuO2/NF; (C) Tafel plots for Ni(OH)2-Fe H-STs-Ni3Fe1/NF and RuO2/NF; (D) Chronopotentiometric curves of Ni(OH)2-Fe H-STs-Ni3Fe1/NF and RuO2/NF in 1 M KOH electrolyte at 10 mA cm-2.
Electrocatalysts | Electrolyte | η at i10 | Ref. (year) |
---|---|---|---|
Fe@Ni HNSs | 1 M KOH | 220 | This work |
Iron-doped Ni3S2 sheets | 1 M KOH | 295 | [ |
Ni2Fe1 nanometer pearl necklaces | 1 M KOH | 240 | [ |
NiFe-co-doped polymeric carbon nitride | 1 M KOH | 310 | [ |
NiFe/MoS2 sheets | 1 M KOH | 260 | [ |
Ni-Fe-P/NF | 1 M KOH | 229 | [ |
Fe-doped NiCo-LDH | 1 M KOH | 285 | [ |
F-NiFe LDH | 1 M KOH | 225 | [ |
NiCoFe alloy nanoparticles | 1 M KOH | 320 | [ |
NiCoFeB nanochains | 1 M KOH | 284 | [ |
CoFe2O4 sheets | 1 M KOH | 275 | [ |
Fe-Ni-Mo nitride porous nanotubes | 1 M KOH | 228 | [ |
Ni0.83Fe0.17(OH)2 sheets | 1 M KOH | 245 | [ |
Ni0.67Fe0.33/C sheets | 1 M KOH | 325 | [ |
N-CoFe LDHs | 1 M KOH | 233 | [ |
Vacancies Ni-NiFe LDHs | 1 M KOH | 245 229 | [ |
Fe-doped Ni(OH)2 sheets | 1 M KOH | 271 | [ |
Ni-Co-Fe hydroxides/N-doped carbon nanoplates | 0.1 M KOH | 250 | [ |
Fe-Co-P alloy nanospheres | 1 M KOH | 252 | [ |
Bimetallic Ni-Fe phosphide nanocomposites | 1 M KOH | 233 | [ |
Fe/Ni/CoMn-MIL-53 nanostructures | 1 M KOH | 236 | [ |
Ni-Fe-O nanowires | 1 M KOH | 224 | [ |
Mo-doped Ni-Fe oxide nanowires | 1 M KOH | 231 | [ |
Ni-Co-Fe hollow multivoid nanocuboids | 0.1 M KOH | 320 | [ |
Table 1 OER performance of NiFe-based nanomaterials in KOH.
Electrocatalysts | Electrolyte | η at i10 | Ref. (year) |
---|---|---|---|
Fe@Ni HNSs | 1 M KOH | 220 | This work |
Iron-doped Ni3S2 sheets | 1 M KOH | 295 | [ |
Ni2Fe1 nanometer pearl necklaces | 1 M KOH | 240 | [ |
NiFe-co-doped polymeric carbon nitride | 1 M KOH | 310 | [ |
NiFe/MoS2 sheets | 1 M KOH | 260 | [ |
Ni-Fe-P/NF | 1 M KOH | 229 | [ |
Fe-doped NiCo-LDH | 1 M KOH | 285 | [ |
F-NiFe LDH | 1 M KOH | 225 | [ |
NiCoFe alloy nanoparticles | 1 M KOH | 320 | [ |
NiCoFeB nanochains | 1 M KOH | 284 | [ |
CoFe2O4 sheets | 1 M KOH | 275 | [ |
Fe-Ni-Mo nitride porous nanotubes | 1 M KOH | 228 | [ |
Ni0.83Fe0.17(OH)2 sheets | 1 M KOH | 245 | [ |
Ni0.67Fe0.33/C sheets | 1 M KOH | 325 | [ |
N-CoFe LDHs | 1 M KOH | 233 | [ |
Vacancies Ni-NiFe LDHs | 1 M KOH | 245 229 | [ |
Fe-doped Ni(OH)2 sheets | 1 M KOH | 271 | [ |
Ni-Co-Fe hydroxides/N-doped carbon nanoplates | 0.1 M KOH | 250 | [ |
Fe-Co-P alloy nanospheres | 1 M KOH | 252 | [ |
Bimetallic Ni-Fe phosphide nanocomposites | 1 M KOH | 233 | [ |
Fe/Ni/CoMn-MIL-53 nanostructures | 1 M KOH | 236 | [ |
Ni-Fe-O nanowires | 1 M KOH | 224 | [ |
Mo-doped Ni-Fe oxide nanowires | 1 M KOH | 231 | [ |
Ni-Co-Fe hollow multivoid nanocuboids | 0.1 M KOH | 320 | [ |
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[3] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[4] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[5] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[6] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[7] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[8] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[9] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[10] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[11] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[12] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[13] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[14] | Cheng-Feng Du, Erhai Hu, Hong Yu, Qingyu Yan. Strategies for local electronic structure engineering of two-dimensional electrocatalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 1-14. |
[15] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||