Chinese Journal of Catalysis ›› 2024, Vol. 56: 88-103.DOI: 10.1016/S1872-2067(23)64563-2
• Articles • Previous Articles Next Articles
Cheng Yanga, Xin Lib,*(), Mei Lia, Guijie Liangc, Zhiliang Jina,*(
)
Received:
2023-10-15
Accepted:
2023-11-13
Online:
2024-01-18
Published:
2024-01-10
Contact:
*E-mail: xinli@scau.edu.cn (X. Li), zl-jin@nun.edu.cn (Z. Jin).
Supported by:
Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis, 2024, 56: 88-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64563-2
Fig. 2. Theoretical model of the GDY (a), CuMn2O4 (b) and Mn2O3 (c). XRD patterns of the GDY (d), CuMn2O4, 400-CuMn2O4, 600-CuMn2O4, 800-CuMn2O4 (e) and 6-CG-20%, 6-CG-30%, 6-CG-40%, 6-CG-50% (f). FTIR spectra (g) and Raman spectrum (h) of GDY. (i) Zeta potentials of GDY, CuMn2O4 and 6-CG-40%.
Fig. 3. SEM image of GDY (a), CuMn2O4 (b) and 6-CG-40% (c). TEM image of GDY (d), CuMn2O4 (e) and 6-CG-40% (f). HRTEM image of 6-CG-40% (g), EDX of 6-CG-40% (h).
Element | k-factor | wt% | wt% Sigma |
---|---|---|---|
C | 2.78081 | 4.74 | 0.15 |
O | 2.02796 | 13.00 | 0.19 |
Mn | 1.14436 | 31.00 | 0.17 |
Cu | 1.23021 | 51.26 | 0.20 |
Total content | 100.00 |
Table 1 TEM element mapping content analysis of 6-CG-40%.
Element | k-factor | wt% | wt% Sigma |
---|---|---|---|
C | 2.78081 | 4.74 | 0.15 |
O | 2.02796 | 13.00 | 0.19 |
Mn | 1.14436 | 31.00 | 0.17 |
Cu | 1.23021 | 51.26 | 0.20 |
Total content | 100.00 |
Samples | SBET (m2 g-1) | Pore volume (cm3 g-1) | Average pore size (nm) |
---|---|---|---|
CuMn2O4 | 6.89 | 0.03 | 20.77 |
6-CG-40% | 15.00 | 0.11 | 41.32 |
Table 2 BET Surface area (SBET), pore diameter and pore volume of CuMn2O4 and 6-CG-40%.
Samples | SBET (m2 g-1) | Pore volume (cm3 g-1) | Average pore size (nm) |
---|---|---|---|
CuMn2O4 | 6.89 | 0.03 | 20.77 |
6-CG-40% | 15.00 | 0.11 | 41.32 |
Fig. 6. Photocatalytic hydrogen evolution activities of 400-CuMn2O4, 600-CuMn2O4, 800-CuMn2O4 (a), GDY, 600-CuMn2O4 and 6-CG-40% (b), 6-CG-20%, 6-CG-30%, 6-CG-40%, 6-CG-50% (c), 6-CG-40% in different pH environments (d), 6-CG-40% in different eosinY environments (e). (f) Cyclability of 6-CG-40%.
Sample | Pre-exponential factor A | Lifetime τ (ns) | Average lifetime τ (ns) | χ2 |
---|---|---|---|---|
EY | A1 = 5.94, A2 = 94.06 | τ1 = 0.1143, τ2 = 0.0035 | 0.407 | 1.33 |
GDY | A1 = 93.83, A2 = 6.17 | τ1 = 0.0043, τ2 = 0.1052 | 0.405 | 1.37 |
CuMn2O4 | A1 = 5.12, A2 = 94.88 | τ1 = 0.1342, τ2 = 0.0037 | 0.365 | 1.38 |
6-CG-40% | A1 = 86.96, A2 = 9.32, A3 = 3.72 | τ1 = 0.0106, τ2 = 0.0817, τ3 = 0.2391 | 0.348 | 1.35 |
Table 3 Attenuation parameters photocatalyst.
Sample | Pre-exponential factor A | Lifetime τ (ns) | Average lifetime τ (ns) | χ2 |
---|---|---|---|---|
EY | A1 = 5.94, A2 = 94.06 | τ1 = 0.1143, τ2 = 0.0035 | 0.407 | 1.33 |
GDY | A1 = 93.83, A2 = 6.17 | τ1 = 0.0043, τ2 = 0.1052 | 0.405 | 1.37 |
CuMn2O4 | A1 = 5.12, A2 = 94.88 | τ1 = 0.1342, τ2 = 0.0037 | 0.365 | 1.38 |
6-CG-40% | A1 = 86.96, A2 = 9.32, A3 = 3.72 | τ1 = 0.0106, τ2 = 0.0817, τ3 = 0.2391 | 0.348 | 1.35 |
Fig. 10. Contact Angle test diagram of GDY (a), CuMn2O4 (b) and 6-CG-40% (c). Contact angle simulation diagram of GDY (d), CuMn2O4 (e) and 6-CG-40% (f).
Fig. 13. Band gap of GDY (a) and CuMn2O4 (b). Mott-Schottky plots of GDY (c) and CuMn2O4 (d). Ultraviolet photoelectron spectra of GDY (e) and CuMn2O4 (f). (g) The proposed charge transfer and separation mechanism of 6-CG-40%.
|
[1] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[2] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[3] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[8] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[9] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[10] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[11] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[12] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[13] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[14] | Wen Zhang, Meng Tian, Haimiao Jiao, Hai-Ying Jiang, Junwang Tang. Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2022, 43(9): 2321-2331. |
[15] | Meiyu Zhang, Chaochao Qin, Wanjun Sun, Congzhao Dong, Jun Zhong, Kaifeng Wu, Yong Ding. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1818-1829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||