Chinese Journal of Catalysis ›› 2024, Vol. 58: 138-145.DOI: 10.1016/S1872-2067(23)64595-4
• Article • Previous Articles Next Articles
Yu-Shuai Xua, Hong-Hui Wangb, Qi-Yuan Lia, Shi-Nan Zhanga, Si-Yuan Xiaa, Dong Xua, Wei-Wei Leic, Jie-Sheng Chena,*(), Xin-Hao Lia,*(
)
Received:
2023-11-03
Accepted:
2024-01-04
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: xinhaoli@sjtu.edu.cn (X.-H. Li),chemcj@sjtu.edu.cn (J.-S. Chen).
Supported by:
Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation[J]. Chinese Journal of Catalysis, 2024, 58: 138-145.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64595-4
Fig. 1. Synthesis and structures of 2D-Mo2C@NC samples. (a) TEM image of the typical 2D-Mo2C@NC sample (N content 7.1 at% and oxidation time 1 h). (b) The thickness of Mo2C nanoflakes in the typical 2D-Mo2C@NC sample. (c) HRTEM image of the typical 2D-Mo2C@NC sample. (d) TEM image of Mo2C/MoO3@NC. (e) XRD patterns of Mo2C@NC (black), Mo2C/MoO3@NC (orange), and the typical 2D-Mo2C@NC (green) samples.
Fig. 2. Catalytic CO2 fixation performance of 2D-Mo2C@NC catalysts for carbonylation of o-phenylenediamine into benzimidazolone. (a) Conversions of o-phenylenediamine (green spheres) and selectivity to benzimidazolone (black spheres) over 2D-Mo2C@NC catalyst at different reaction times. (b) Conversions of o-phenylenediamine to benzimidazolone over NC support, bulk Mo2C, Mo2CTx, Mixture, and 2D-Mo2C@NC catalysts. (c) Scope of substrates catalyzed by optimal 2D-Mo2C@NC catalyst. Reaction conditions for the synthesis of imidazolones: 2 mL N-methylpyrrolidone (NMP), 1 mmol diamine, 0.4 mmol 1,8-diazabicyclo [5.4.0]-7-undecene (DBU), 30 mg catalyst, 140 °C (a), 120 °C (b), 10 bar CO2, 4 h.
Fig. 3. Promoted CO2 fixation on electron-rich 2D-Mo2C in 2D-Mo2C@NC catalysts for benzimidazolone production. (a) Electron density difference stereograms of typical 2D-Mo2C@NC model (Green: electron-rich area, yellow: electron-deficient area). Color code: C, gray; N, blue; Mo, green. (b) Measured work functions (Φ) of bulk Mo2C (dash line) and 2D-Mo2C@NC samples (spheres) with different N contents (Table S2). (c) Calculated adsorption energies (Eads-CO2) of CO2 molecules on the surface of the neutral Mo2C and electron-rich Mo2C (Mo2C+e-) models. Insets: optimized configurations of CO2 on the surface of two Mo2C models. (d) The turnover frequency (TOF) values for carbonylation of o-phenylenediamine with CO2 to benzimidazolone over bulk Mo2C catalyst (dash line) and 2D-Mo2C@NC catalysts (spheres). (e) Mo 3d XPS spectra of 2D-Mo2C@NC (N content 7.1 at%) and bulk Mo2C samples. (f) Reusability of 2D-Mo2C@NC catalyst. Reaction conditions: 1 mL N-methylpyrrolidone (NMP), 1 mmol o-phenylenediamine, 0.4 mmol 1,8-diazabicyclo [5.4.0]-7-undecene (DBU), 10 mg catalyst, 140 °C, 10 bar CO2, 1 h.
Fig. 4. Promoted CO2 fixation on “ladder-like” 2D-Mo2C in 2D-Mo2C@NC catalysts for benzimidazolone production. (a) Schematic model of CO2 adsorption on Mo2C@NC and 2D-Mo2C@NC samples. (b) CO2 TPD results for adsorption capacity of Mo2C@NC and 2D-Mo2C@NC samples. (c) Conversions of o-phenylenediamine to benzimidazolone over Mo2C@NC and 2D-Mo2C@NC catalysts. (d) TOF values of the optimized 2D-Mo2C@NC catalyst (green spheres) and the state-of-the-art catalysts in the literature. Reaction conditions: 1 mL NMP, 1 mmol o-phenylenediamine, 0.4 mmol DBU, 10 mg catalyst, 140 °C (120 °C), 10 bar CO2, 1 h.
|
[1] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism [J]. Chinese Journal of Catalysis, 2024, 58(3): 237-246. |
[2] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
[3] | Jian Dang, Weijie Li, Bin Qin, Yuchao Chai, Guangjun Wu, Landong Li. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst [J]. Chinese Journal of Catalysis, 2024, 57(2): 133-142. |
[4] | Changpo Ma, Ying Lai, Tiange Zhao, Xiaoxuan Zhang, Haichao Liu, Weiran Yang. Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers [J]. Chinese Journal of Catalysis, 2024, 56(1): 122-129. |
[5] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[6] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[7] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[8] | Xing-Wei Gu, Youcan Zhang, Fengqian Zhao, Han-Jun Ai, Xiao-Feng Wu. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex [J]. Chinese Journal of Catalysis, 2023, 48(5): 214-223. |
[9] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[10] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[11] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[12] | Ke Wang, Miao Cheng, Nan Wang, Qianyi Zhang, Yi Liu, Junwei Liang, Jie Guan, Maochang Liu, Jiancheng Zhou, Naixu Li. Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 44(1): 146-159. |
[13] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[14] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[15] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||