Chinese Journal of Catalysis ›› 2024, Vol. 58: 237-246.DOI: 10.1016/S1872-2067(23)64597-8
• Article • Previous Articles Next Articles
Xiaorui Dua,b,1, Yike Huanga,c,1, Xiaoli Pana, Xunzhu Jianga,d, Yang Sua, Jingyi Yanga, Yalin Guoa,e, Bing Hana,f, Chengyan Wenb, Chenguang Wangb,g,*(), Botao Qiaoa,d,*(
)
Received:
2023-12-09
Accepted:
2024-01-04
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: bqiao@dicp.ac.cn (B Qiao),wangcg@ms.giec.ac.cn (C. Wang).
About author:
1 Contributed equally to this work.
Supported by:
Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism[J]. Chinese Journal of Catalysis, 2024, 58: 237-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64597-8
Fig. 2. (a) Pt 4f XPS of samples; The binding energy positions for Pt 4f7/2 of Pt0, Pt2+, and Pt4+ are at 71, 72.5, and 74.7 eV, respectively. The green peak represents the Ti 3s energy loss. (b) XANES spectra of samples, with Pt foil and PtO2 as references. (c) Fourier transforms of k3-weighted EXAFS spectra of samples.
Sample | Shell | CN a | R (Å) b | σ2×103(Å2) c | R factor |
---|---|---|---|---|---|
Pt foil | Pt‒Pt | 12 | 2.76±0.002 | 5.0±0.2 | 0.003 |
Pt/TiO2 | Pt‒O | 1.1±0.4 | 2.02±0.02 | 4.3±2.7 | 0.006 |
Pt‒Pt | 6.7±0.6 | 2.76±0.01 | 5.4±0.4 | — | |
Pt/TiO2-400 | Pt‒O | 2.6±0.4 | 2.00±0.01 | 3.8±1.2 | 0.012 |
Pt‒Pt | 4.0±0.7 | 2.76±0.01 | 5.2±0.7 | — | |
Pt/TiO2-550 | Pt‒O | 5.8±0.4 | 1.99±0.01 | 1.4±0.4 | 0.007 |
Pt‒Pt | 2.1±1.2 | 3.10±0.04 | 15.7±6.1 | — | |
Pt‒Ti (O bridged) | 5.7±1.4 | 3.56±0.02 | 3.1±1.2 | — | |
PtO2 | Pt‒O | 5.2±0.4 | 2.02±0.01 | 2.6±0.5 | 0.004 |
Pt‒Pt | 5.4±0.8 | 3.10±0.01 | 3.6±0.5 | — | |
Pt‒Osec | 6.2±3.4 | 3.79±0.04 | 20.7±6.9 | — |
Table 1 EXAFS fitting parameters at the Pt L3-edge various samples.
Sample | Shell | CN a | R (Å) b | σ2×103(Å2) c | R factor |
---|---|---|---|---|---|
Pt foil | Pt‒Pt | 12 | 2.76±0.002 | 5.0±0.2 | 0.003 |
Pt/TiO2 | Pt‒O | 1.1±0.4 | 2.02±0.02 | 4.3±2.7 | 0.006 |
Pt‒Pt | 6.7±0.6 | 2.76±0.01 | 5.4±0.4 | — | |
Pt/TiO2-400 | Pt‒O | 2.6±0.4 | 2.00±0.01 | 3.8±1.2 | 0.012 |
Pt‒Pt | 4.0±0.7 | 2.76±0.01 | 5.2±0.7 | — | |
Pt/TiO2-550 | Pt‒O | 5.8±0.4 | 1.99±0.01 | 1.4±0.4 | 0.007 |
Pt‒Pt | 2.1±1.2 | 3.10±0.04 | 15.7±6.1 | — | |
Pt‒Ti (O bridged) | 5.7±1.4 | 3.56±0.02 | 3.1±1.2 | — | |
PtO2 | Pt‒O | 5.2±0.4 | 2.02±0.01 | 2.6±0.5 | 0.004 |
Pt‒Pt | 5.4±0.8 | 3.10±0.01 | 3.6±0.5 | — | |
Pt‒Osec | 6.2±3.4 | 3.79±0.04 | 20.7±6.9 | — |
Fig. 3. Representative HAADF-STEM images and corresponding Pt size distributions of Pt/TiO2-550-N2 (a,b), PtO2/TiO2-grind (c,d), and PtO2/TiO2-grind-550 (e?h). The Pt/TiO2-550-N2 sample was obtained by calcining Pt/TiO2 under N2 flow at 550 °C for 3 h.
Fig. 4. Explore Pt NP redispersion mechanism by evaluating chemical potentials of intermediates (monomers) and size-dependent chemical potentials of metallic and di-oxidized clusters on perfect r110. (a) Chemical potentials of several Pt species at 450, 550 and 650 °C; Pt1(O2)/r110, and PtO2 (g) denotes oxygen-adsorbed Pt single atom on r110 surface and gaseous PtO2 molecule, respectively. (b,c) Optimized structures of possible surface diffusion species Pt1/r110 and Pt1(O2)/r110. Color code: O, red, Pt, white, Ti, ice blue. (d) Size-dependent chemical potentials of metallic and di-oxidized Pt clusters at different temperatures.
Fig. 5. Redispersion Gibbs free energy change ΔG at different temperatures for nanoparticle with 3 nm projected diameter (see Fig. S10), contact angle 60° with support. Because total number of Pt atoms is constant during redispersion, the boundary marked with dash line obeys relationship NPt~1/γ. ΔG values of conditions exceeding boundary are set as zero for color reference. (a) 450 °C; (b) 550 °C; (c) 650 °C.
Fig. 6. Representative HAADF-STEM images and corresponding size distributions of Pt/TiO2-550-10h (a?d), and the samples obtained by calcining Pt/TiO2-550-10h again at 600 (e?h) and 650 °C (i?l) for 10 h under air flow, denoted as Pt/TiO2-550-600 and Pt/TiO2-550-650, respectively.
|
[1] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
[2] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[3] | Jian Dang, Weijie Li, Bin Qin, Yuchao Chai, Guangjun Wu, Landong Li. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst [J]. Chinese Journal of Catalysis, 2024, 57(2): 133-142. |
[4] | Rushuo Li, Linmeng Wang, Peiyun Zhou, Jing Lin, Zhiyuan Liu, Juan Chen, Danfeng Zhao, Xiubing Huang, Zhiping Tao, Ge Wang. Electronic state, abundance and microenvironment modulation of Ru nanoclusters within hierarchically porous UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene [J]. Chinese Journal of Catalysis, 2024, 56(1): 150-165. |
[5] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[6] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[7] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[8] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[9] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[10] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[11] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[12] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[13] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[14] | Yang Ou, Songda Li, Fei Wang, Xinyi Duan, Wentao Yuan, Hangsheng Yang, Ze Zhang, Yong Wang. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments [J]. Chinese Journal of Catalysis, 2022, 43(8): 2026-2033. |
[15] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||