Chinese Journal of Catalysis ›› 2024, Vol. 56: 150-165.DOI: 10.1016/S1872-2067(23)64562-0
• Articles • Previous Articles Next Articles
Rushuo Lia,1, Linmeng Wanga,1, Peiyun Zhoua, Jing Lina, Zhiyuan Liua, Juan Chena, Danfeng Zhaoa, Xiubing Huanga,*(), Zhiping Taob,*(
), Ge Wanga,*(
)
Received:
2023-09-13
Accepted:
2023-11-10
Online:
2024-01-18
Published:
2024-01-10
Contact:
*E-mail: xiubinghuang@ustb.edu.cn (X. Huang), taozhiping.ripp@sinopec.com (Z. Tao), gewang@ustb.edu.cn (G. Wang).
About author:
1Contributed equally to this work.
Supported by:
Rushuo Li, Linmeng Wang, Peiyun Zhou, Jing Lin, Zhiyuan Liu, Juan Chen, Danfeng Zhao, Xiubing Huang, Zhiping Tao, Ge Wang. Electronic state, abundance and microenvironment modulation of Ru nanoclusters within hierarchically porous UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene[J]. Chinese Journal of Catalysis, 2024, 56: 150-165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64562-0
Fig. 1. High-magnification SEM images of Micro-UiO-66 (a), Meso-UiO-66 (b) and Macro-UiO-66 (d). (c) TEM image of Meso-UiO-66. Nitrogen sorption isotherms (e) and corresponding pore size distributions (f) (calculated by DFT-analysis) for the Micro-UiO-66 and Meso-UiO-66.
Fig. 2. High-magnification SEM images of Ru@Meso-UiO-25-200 (a), Ru@Micro-UiO-25-200 (b), and Ru@Macro-UiO-25-200 (c). The low-magnification (d) and high-magnification (e,f) TEM images, and HAADF-STEM image (g) with elemental mapping images of Ru@Meso- UiO-25-200.
Fig. 3. XPS full survey (a), Ru 3p (b), Ce 3d (c), O 1s (d) spectra, and structure schematic illustration (e) of Ru3+-Meso-UiO-25, Ru@Meso-UiO-25-150, Ru@Meso-UiO-25-180, and Ru@Meso-UiO-25-200.
Fig. 4. Powder XRD patterns of HP-UiO-66(Ce) with different pore sizes encapsulated Ru NCs (a), Meso-UiO-66 reduced at different temperatures (b), Meso-UiO-66 encapsulated Ru NCs reduced at different temperatures (c), Meso-UiO-66 encapsulated Ru NCs with different Ru loadings (d), Meso-UiO-66 with different Ru3+ adsorption temperatures (e), and Meso-UiO-66 encapsulated Ru NCs with different Ru3+ adsorption temperatures (f).
Fig. 5. TEM, HRTEM, and Ru NCs size distribution images of Ru@Meso-UiO-25-200 (a-c), Ru@Meso-UiO-30-200 (d-f), Ru@Meso- UiO-35-200 (g-i), Ru@Meso-UiO-40-200 (j-l), and Ru@Meso-UiO- 60-200 (m-o).
Entry | Sample | T (°C) | t (h) | Con. b (%) | Sel. c (%) | |
---|---|---|---|---|---|---|
DCPD | DHDCPD | THDCPD | ||||
1 | Micro-UiO-66 | 100 | 10 | 5 | 100 | — |
2 | Macro-UiO-66 | 100 | 5 | 6.7 | 100 | — |
3 | Meso-UiO-66 | 100 | 5 | 13.2 | 100 | — |
— | 2 | 0 | — | — | ||
4 | Meso-UiO-200 | 100 | 2 | 6.4 | 100 | — |
5 | Ru@Micro-UiO-25-200 | 60 | 1 | 5.4 | 77.3 | 22.7 |
6 | Ru@Macro-UiO-25-200 | 60 | 0.5 | 38.8 | 9.3 | 90.7 |
7 | Ru@Meso-UiO-25-200 | 60 | 0.5 | 99.7 | 9.1 | 90.9 |
8 | Ru@Meso-UiO-25-180 | 60 | 1 | 0 | — | — |
9 | Ru@Meso-UiO-25-150 | 60 | 1 | 0 | — | — |
10 | 1.5Ru@Meso-UiO-25-200 | 60 | 0.5 | 7 | 42.7 | 57.3 |
11 | 1Ru@Meso-UiO-25-200 | 60 | 0.5 | 0 | — | — |
12 | 0.5Ru@Meso-UiO-25-200 | 60 | 0.5 | 0 | — | — |
13 | Ru@Meso-UiO-30-200 | 60 | 0.5 | 78.7 | 27.8 | 72.1 |
14 | Ru@Meso-UiO-35-200 | 60 | 0.5 | 3.8 | 69.2 | 30.8 |
15 | Ru@Meso-UiO-40-200 | 60 | 0.5 | 0.8 | 56 | 44 |
16 | Ru@Meso-UiO-60-200 | 60 | 0.5 | 0 | — | — |
Table 1 Catalytic performances towards the hydrogenation of DCPD over different catalysts for comparison a.
Entry | Sample | T (°C) | t (h) | Con. b (%) | Sel. c (%) | |
---|---|---|---|---|---|---|
DCPD | DHDCPD | THDCPD | ||||
1 | Micro-UiO-66 | 100 | 10 | 5 | 100 | — |
2 | Macro-UiO-66 | 100 | 5 | 6.7 | 100 | — |
3 | Meso-UiO-66 | 100 | 5 | 13.2 | 100 | — |
— | 2 | 0 | — | — | ||
4 | Meso-UiO-200 | 100 | 2 | 6.4 | 100 | — |
5 | Ru@Micro-UiO-25-200 | 60 | 1 | 5.4 | 77.3 | 22.7 |
6 | Ru@Macro-UiO-25-200 | 60 | 0.5 | 38.8 | 9.3 | 90.7 |
7 | Ru@Meso-UiO-25-200 | 60 | 0.5 | 99.7 | 9.1 | 90.9 |
8 | Ru@Meso-UiO-25-180 | 60 | 1 | 0 | — | — |
9 | Ru@Meso-UiO-25-150 | 60 | 1 | 0 | — | — |
10 | 1.5Ru@Meso-UiO-25-200 | 60 | 0.5 | 7 | 42.7 | 57.3 |
11 | 1Ru@Meso-UiO-25-200 | 60 | 0.5 | 0 | — | — |
12 | 0.5Ru@Meso-UiO-25-200 | 60 | 0.5 | 0 | — | — |
13 | Ru@Meso-UiO-30-200 | 60 | 0.5 | 78.7 | 27.8 | 72.1 |
14 | Ru@Meso-UiO-35-200 | 60 | 0.5 | 3.8 | 69.2 | 30.8 |
15 | Ru@Meso-UiO-40-200 | 60 | 0.5 | 0.8 | 56 | 44 |
16 | Ru@Meso-UiO-60-200 | 60 | 0.5 | 0 | — | — |
Fig. 6. Conversion of DCPD (a) and selectivity of DHDCPD and THDCPD (b) over Ru@Meso-UiO-25-200 at different reaction times. (c,d) Reusability of Ru@Meso-UiO-25-200-AF-H2/Ar in the hydrogenation reaction of DCPD (t = 35 min). Reaction conditions: mDCPD = 200 mg, mcatalyst = 20 mg, Vsolvent = 5 mL, PH2 = 2 MPa, T = 60 °C.
Fig. 7. The optimized simplified structures of Meso-UiO-66 (a), and Ru@Meso-UiO-25-200 (b). (c) The adsorption energy of H2 and DCPD chemisorbed and physiosorbed on Meso-UiO-66 and Ru@Meso- UiO-25-200, ** and * represent physisorbed and chemisorbed species respectively. The structures of catalysts, H2 and DCPD are displayed as ball-and-stick models in which yellow, green, gray, white, and red balls represent Ce, Ru, C, H and O, respectively.
Fig. 8. PDOS of DCPD and H2 adsorbed on Ru@Meso-UiO-25-200 (a,b) and Meso-UiO-66 (c,d), respectively. The Fermi level is set to zero as shown as dashed line. The optimized models of chemisorbed H2 (e) and physisorbed DCPD (f) on Ce-O sites of Meso-UiO-66, chemisorbed H2 (g) and chemisorbed DCPD (h) on Ru active sites of Ru@Meso-UiO-25-200. Charge density difference for DCPD and H2 adsorbed on Ru@Meso-UiO-25-200 (i,j) and Meso-UiO-66 (k,l), respectively. Red and blue represent electron accumulation and depletion, and the isosurface value is set as 0.005 a.u. Charge transfer (ΔQ, e) are calculated from the population analysis in Hirshfeld method.
|
[1] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[2] | Syed Shoaib Ahmad Shah, Tayyaba Najam, Jiao Yang, Muhammad Sufyan Javed, Lishan Peng, Zidong Wei. Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(8): 2193-2201. |
[3] | Jinxin Wei, Yawen Chen, Hongyang Zhang, Zanyong Zhuang, Yan Yu. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction [J]. Chinese Journal of Catalysis, 2021, 42(1): 78-86. |
[4] | Nian Hu, Xiao-Yun Li, Si-Ming Liu, Zhao Wang, Xiao-Ke He, Yue-Xin Hou, Yu-Xiang Wang, Zhao Deng, Li-Hua Chen, Bao-Lian Su. Enhanced stability of highly-dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation [J]. Chinese Journal of Catalysis, 2020, 41(7): 1081-1090. |
[5] | Mi Tian, Haifeng Li, Lailai Wang. Highly efficient Rh(I)/tris-H8-binaphthyl monophosphite catalysts for hydroformylation of dicyclopentadiene to dialdehydes [J]. Chinese Journal of Catalysis, 2018, 39(10): 1646-1652. |
[6] | Tiejing Hu, Jian Liu, Changyan Cao, Weiguo Song. Synthesis of ZSM-5 monoliths with hierarchical porosity through a steam-assisted crystallization method using sponges as scaffolds [J]. Chinese Journal of Catalysis, 2017, 38(5): 872-878. |
[7] | João Pires, Ana C. Fernandes, Divakar Duraiswami. Synthesis of novel hierarchical ZSM-5 monoliths and their application in trichloroethylene removal [J]. Chinese Journal of Catalysis, 2014, 35(9): 1492-1496. |
[8] | LI Xiao-Yun, SUN Ming-Hui, ROOKE Joanna Claire, CHEN Li-Hua, SU Bao-Lian. Synthesis and applications of hierarchically porous catalysts [J]. Chinese Journal of Catalysis, 2013, 34(1): 22-47. |
[9] | PI Xiaodong1, ZHOU Yafen1,2, ZHOU Limei1,2, YUAN Maolin1, LI Ruixiang1, FU Haiyan1,#, CHEN Hua1,*. Dicyclopentadiene Hydroformylation in an Aqueous/Organic Two Phase System in the Presence of a Cationic Surfactant [J]. Chinese Journal of Catalysis, 2011, 32(4): 566-571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||