Chinese Journal of Catalysis ›› 2024, Vol. 58: 25-36.DOI: 10.1016/S1872-2067(23)64605-4
• Perspective • Previous Articles Next Articles
Lili Chena, Yanheng Haoa, Jianyi Chua, Song Liub, Fenghua Baia,*(), Wenhao Luoa,*(
)
Received:
2023-11-02
Accepted:
2024-01-15
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: w.luo@imu.edu.cn (W. Luo),f.h.bai@imu.edu.cn (F. Bai).
About author:
Fenghua Bai (College of Chemistry and Chemical Engineering, Inner Mongolia University) obtained her Ph.D. in 2008 from Inner Mongolia University (China). Since 2008, she has been working in Inner Mongolia University as an associate professor. In 2012, she was a visiting scholar at University of Exeter in UK. She has been a vice dean of School of Chemistry and Chemical Engineering, Inner Mongolia University since 2015. She was appointed as an associate editor of Mater. Today Sustain. since 2023. Her research interests lie in the development of new catalytic materials for the sustainable production of chemicals from biomass, carbon dioxide, syngas or waste streams.Supported by:
Lili Chen, Yanheng Hao, Jianyi Chu, Song Liu, Fenghua Bai, Wenhao Luo. Electrocatalytic nitrate reduction to ammonia: A perspective on Fe/Cu-containing catalysts[J]. Chinese Journal of Catalysis, 2024, 58: 25-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64605-4
Cathode | Electrolyte | pH | Faradaic efficiency (%) | Yield | Applied potential | Ref. |
---|---|---|---|---|---|---|
Fe-N-C | 0.50 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 75 | 0.46 mmol cm‒2 h‒1 | -0.66 V vs. RHE | [ |
Fe-N2O2 | 0.5 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 92 | 9.2 mg h-1 cm-2 | -0.68 V vs. RHE | [ |
Cu-N-C | 0.1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 84.7 | 4.5 mg cm-2 h-1 | -1.00 V vs. RHE | [ |
Cu-N-C | 0.5 mol L‒1 Na2SO4 + 50 mg L‒1 NO3- | 9.81 | — | 9.23 mg h‒1 mgcat‒1 | -1.50 V vs. SCE | [ |
Ni1Cu-SAA | 0.5 mol L‒1 K2SO4 + 200 ppm NO3- | 7 | ~100 | 326.7 μmol h-1 cm-2 | -0.55 V vs. RHE | [ |
Cu/Ni-NC | 0.5 mol L‒1 Na2SO4 + 100 ppm NaNO3 | 9.81 | 97.28 | 5480 mg h-1 mgcat-1 cm-2 | -0.70 V vs. RHE | [ |
Cu50Ni50 | 1 mol L‒1 KOH + 100 mmol L‒1 KNO3 | 14 | ∼95 | — | -0.20 V vs. RHE | [ |
PdCu/Cu2O | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 9.82 | 94.32 | 0.190 mmol h-1 cm-2 | -0.80 V vs. RHE | [ |
Co-Fe@Fe2O3 | 50 ppm NaNO3 + 0.1 mol L‒1 Na2SO4 | 7 | 85.2 ± 0.6 | 1505.9 μg h-1 cm-2 | -0.745 V vs. RHE | [ |
Ru1Cu10/rGO | 0.1 mol L‒1 KNO3 + 1 mol L‒1 KOH | 14 | 98 | 0.38 mmol cm-2 h-1 | -0.05 V vs. RHE | [ |
Cu/Fe-TiO2 | 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 7 | 91.2 | 505.73 μg h-1 cm-2 | -1.40 V vs. SCE | [ |
Fe/Cu-HNG | 1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 92.51 | 1.08 mmol h-1 mg-1 | -0.50 V vs. RHE | [ |
FeNPs@MXene | 0.5 mol L‒1 Na2SO4 + 100 mg L-1 NO3- | 7 | — | 0.51 mg h-1 cm-2 | -0.95 V vs. RHE | [ |
Cu50Co50 | 0.1 mol L‒1 KNO3 +0.5 mol L‒1 K2SO4 | 7 | 100 ± 1 | 4.8 mmol cm-2 h-1 | -0.20 V vs. RHE | [ |
FeMo-N-C | 0.05 mol L‒1 PBS + 0.16 mol L‒1 NO3- | 6.3 | 94% | 18.0 μmol cm-2 h-1 | -0.45 V vs. RHE | [ |
TiO2 NTs/CuOx | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 7 | 92.23 | 241.81 μg h-1 cm-2 | -0.75V vs. RHE | [ |
CuCoSP | 0.01 mol L‒1 NO3- + 0.1 mol L‒1 KOH | 13 | 93.3 ± 2.1 | 1.17 mmol cm-2 h-1 | -0.175 V vs. RHE | [ |
Cu-PTCDA | 0.1 mol L‒1 PBS + 500 ppm NO3- | 7 | 77 ± 3 | 436 ± 85 μg h-1 cm-2 | -0.40 V vs. RHE | [ |
Table 1 Fe/Cu-containing catalysts for electrocatalytic NO3RR to NH3.
Cathode | Electrolyte | pH | Faradaic efficiency (%) | Yield | Applied potential | Ref. |
---|---|---|---|---|---|---|
Fe-N-C | 0.50 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 75 | 0.46 mmol cm‒2 h‒1 | -0.66 V vs. RHE | [ |
Fe-N2O2 | 0.5 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 92 | 9.2 mg h-1 cm-2 | -0.68 V vs. RHE | [ |
Cu-N-C | 0.1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 84.7 | 4.5 mg cm-2 h-1 | -1.00 V vs. RHE | [ |
Cu-N-C | 0.5 mol L‒1 Na2SO4 + 50 mg L‒1 NO3- | 9.81 | — | 9.23 mg h‒1 mgcat‒1 | -1.50 V vs. SCE | [ |
Ni1Cu-SAA | 0.5 mol L‒1 K2SO4 + 200 ppm NO3- | 7 | ~100 | 326.7 μmol h-1 cm-2 | -0.55 V vs. RHE | [ |
Cu/Ni-NC | 0.5 mol L‒1 Na2SO4 + 100 ppm NaNO3 | 9.81 | 97.28 | 5480 mg h-1 mgcat-1 cm-2 | -0.70 V vs. RHE | [ |
Cu50Ni50 | 1 mol L‒1 KOH + 100 mmol L‒1 KNO3 | 14 | ∼95 | — | -0.20 V vs. RHE | [ |
PdCu/Cu2O | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 9.82 | 94.32 | 0.190 mmol h-1 cm-2 | -0.80 V vs. RHE | [ |
Co-Fe@Fe2O3 | 50 ppm NaNO3 + 0.1 mol L‒1 Na2SO4 | 7 | 85.2 ± 0.6 | 1505.9 μg h-1 cm-2 | -0.745 V vs. RHE | [ |
Ru1Cu10/rGO | 0.1 mol L‒1 KNO3 + 1 mol L‒1 KOH | 14 | 98 | 0.38 mmol cm-2 h-1 | -0.05 V vs. RHE | [ |
Cu/Fe-TiO2 | 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 7 | 91.2 | 505.73 μg h-1 cm-2 | -1.40 V vs. SCE | [ |
Fe/Cu-HNG | 1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 92.51 | 1.08 mmol h-1 mg-1 | -0.50 V vs. RHE | [ |
FeNPs@MXene | 0.5 mol L‒1 Na2SO4 + 100 mg L-1 NO3- | 7 | — | 0.51 mg h-1 cm-2 | -0.95 V vs. RHE | [ |
Cu50Co50 | 0.1 mol L‒1 KNO3 +0.5 mol L‒1 K2SO4 | 7 | 100 ± 1 | 4.8 mmol cm-2 h-1 | -0.20 V vs. RHE | [ |
FeMo-N-C | 0.05 mol L‒1 PBS + 0.16 mol L‒1 NO3- | 6.3 | 94% | 18.0 μmol cm-2 h-1 | -0.45 V vs. RHE | [ |
TiO2 NTs/CuOx | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 7 | 92.23 | 241.81 μg h-1 cm-2 | -0.75V vs. RHE | [ |
CuCoSP | 0.01 mol L‒1 NO3- + 0.1 mol L‒1 KOH | 13 | 93.3 ± 2.1 | 1.17 mmol cm-2 h-1 | -0.175 V vs. RHE | [ |
Cu-PTCDA | 0.1 mol L‒1 PBS + 500 ppm NO3- | 7 | 77 ± 3 | 436 ± 85 μg h-1 cm-2 | -0.40 V vs. RHE | [ |
Fig. 3. (a) NH3 yield rate at different partial current density for different catalysts (NC, FeNP/NC and Fe SAC). The inset shows schematic model of Fe-N4. Adapted with permission [40]. Copyright 2021, Springer Nature. (b) Time profile of NH4+ concentration for different Cu-based SAC and benchmark catalysts at ?1.5 V vs. SCE. The inset shows schematic model of Cu-N4. Adapted with permission [25]. Copyright 2022, Elsevier. (c) The electrocatalytic performance of Cu-NC, Ni-NC and Cu/Ni-NC in electrocatalytic NO3RR to NH3. Adapted with permission [44]. Copyright 2023, Wiley-VCH GmbH. (d) The impact of Cu-Ni alloy ratio on the NO3RR activity and the adsorption intermediates. Adapted with permission [19]. Copyright 2020, American Chemical Society. (e) The electrocatalytic performance of different Cu-Pd bimetallic and benchmark catalysts in NO3RR. Adapted with permission [45]. Copyright 2021, Elsevier. (f) The electrocatalytic performance of different Cu-Fe bimetallic and benchmark catalysts in NO3RR at ?1.4 V vs. SCE. Adapted with permission [48]. Copyright 2023, Elsevier.
Fig. 4. (a) Schematic illustration of FeNPs@MXene for NO3RR. Adapted with permission [50]. Copyright 2022, American Chemical Society. (b) Schematic diagram of Ni foam supported CuCo nanosheets via a one-step electro-deposition method. Adapted with permission [51]. Copyright 2022, Springer Nature. (c) Schematic illustration of the Cu/Co-based binary catalyst’s tandem catalytic process. Adapted with permission [53]. Copyright 2022, Springer Nature.
Fig. 5. (a) DEMS results of the Cu/Cu2O catalyst in NO3RR. Adapted with permission [37]. Copyright 2019, Wiley-VCH. (b) First-order derivatives of the operando XANES spectra recorded at different potentials in NO3RR. (c) Corresponding operando Cu K edge FT-EXAFS spectra at different potentials from fresh, 0.00 to -1.00 V vs. RHE. Adapted with permission [42]. Copyright 2022, American Chemical Society. (d) In situ ATR-FTIR spectra of Pd/NF obtained at -1.4 V vs. RHE in 0.1 mol L?1 NaNO3 solution. Adapted with permission [62]. Copyright 2023, Wiley-VCH. In situ Raman spectra of Ru1Cu10 (e) and Cu (f) during NO3RR at different potentials (V vs. RHE) in a 0.1 mol L?1 KNO3 + 1 mol L?1 KOH mixed solution. Adapted with permission [47]. Copyright 2023, Wiley-VCH.
Fig. 7. Radar charts of the electrocatalytic NO3RR performances of three catalyst strategies: Representative examples of single-atom catalysts [40?-42] (a), bimetallic catalysts [43,46,47] (b), and biomimetic catalysts (c) [51?-53].
|
[1] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[2] | Quanquan Bie, Haibo Yin, Yunlong Wang, Haiwei Su, Yue Peng, Junhua Li. Electrocatalytic reduction of CO2 with enhanced C2 liquid products activity by the synergistic effect of Cu single atoms and oxygen vacancies [J]. Chinese Journal of Catalysis, 2024, 57(2): 96-104. |
[3] | Yiping Li, Tanyuan Wang, Zhangyi Yao, Qi’an Chen, Qing Li. Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping [J]. Chinese Journal of Catalysis, 2024, 56(1): 51-73. |
[4] | Yanbin Qi, Yihua Zhu, Hongliang Jiang, Chunzhong Li. Promoting electrocatalytic oxidation of methanol to formate through interfacial interaction in NiMo oxide-CoMo oxide mixture-derived catalysts [J]. Chinese Journal of Catalysis, 2024, 56(1): 139-149. |
[5] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[6] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[7] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[8] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[9] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[10] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[11] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[12] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[13] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[14] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[15] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||