Chinese Journal of Catalysis ›› 2024, Vol. 61: 179-191.DOI: 10.1016/S1872-2067(24)60005-7
• Articles • Previous Articles Next Articles
Kaikai Baa, Yuʼnan Liua, Kai Zhanga, Ping Wangb, Yanhong Lina, Dejun Wanga, Ziheng Lic, Tengfeng Xiea,*()
Received:
2023-12-20
Accepted:
2024-03-11
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: Supported by:
Kaikai Ba, Yuʼnan Liu, Kai Zhang, Ping Wang, Yanhong Lin, Dejun Wang, Ziheng Li, Tengfeng Xie. Unveiling the multiple effects of MOF-derived TiO2 on Ti-Fe2O3 photoanodes for efficient and stable photoelectrochemical water oxidation[J]. Chinese Journal of Catalysis, 2024, 61: 179-191.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60005-7
Fig. 1. SEM images of Ti-Fe2O3 (a), Ti-MOF/Ti-Fe2O3 (b), TiO2/Ti-Fe2O3 (c), and ZIF-67/TiO2/Ti-Fe2O3 (d). TEM image (e), HRTEM image (f), and elemental mapping (g) of ZIF-67/TiO2/Ti-Fe2O3.
Fig. 2. XRD patterns (a), Raman spectra (b), and FTIR spectra (c) of ZIF-67/TiO2/Ti-Fe2O3, TiO2/Ti-Fe2O3, and Ti-Fe2O3. (d) N2 adsorption-desorption isotherms of MOF-derived TiO2. (e) Comparison of contact angles of TiO2/Ti-Fe2O3 and Ti-Fe2O3. (f) UV-vis absorption spectra.
Fig. 4. LSV curves (the solid lines represent testing under illumination, while the dashed lines were run in the dark) (a), IPCE values (b), ABPE values (c) of Ti-Fe2O3, TiO2/Ti-Fe2O3, and ZIF-67/TiO2/Ti-Fe2O3, and stability test (d) of ZIF-67/TiO2/Ti-Fe2O3.
Photoanode | Photocurrent density (mA cm-2) | Stability | Ref. |
---|---|---|---|
Ti:Fe2O3@CoFe-cMOFs | 3.32 | 10 h stability ca. 95% of the original | [ |
CoPi/H2TCPP/Ti-Fe2O3 | 1.84 | 2 h stability ca. 84% of the original | [ |
FexNi1‒xOOH/B/Ti-Fe2O3 | 3.39 | 2 h stability ca. 93% of the original | [ |
Co-Sil/CTF/Gd-Fe2O3 | 2.74 | 5 h stability ca. 99% of the original | [ |
CoAl-LDH/F-Fe2O3 | 2.46 | 6 h stability ca. 90% of the original the original | [ |
Ti: Fe2O3@g-C3N4 | 3.38 | 5 h stability ca. 85% of the original | [ |
Ti-Fe2O3/CoFePi | 2.15 | 3 h stability ca. 95% of the original | [ |
Co-Pi/CQDs/Fe2O3/TiO2 | 3.00 | 3 h stability ca. 100% of the original | [ |
F:FeOOH/Zr:Fe2O3 | 2.11 | 2 h stability ca. 100% of the original | [ |
Fe2O3/FePO4/FeOOH | 2.00 | 1.3 h stability ca. 99% of the original | [ |
Fe2O3/Fe2TiO5/CoFe | 1.25 | 24 h stability ca. 80% of the original | [ |
ZnFe2O4/Fe2O3 | 3.17 | 3 h stability ca. 86% of the original | [ |
NiFe(OH)x/PSi/Ge-Fe2O3 | 4.57 | 65 h stability ca. 97% of the original | [ |
Ta:Fe2O3@CaFe2O4/FeNiOx | 2.70 | 50 h stability ca. 88% of the original | [ |
NiCoP/Fe2O3 | 3.80 | 4 h stability ca. 99% of the original | [ |
ZIF-67/TiO2/Ti-Fe2O3 | 4.04 | 40 h stability ca. 90% of the original | this work |
Table 1 Comparison of the photocurrent densities of Fe2O3-based photoanodes in the literature with our results at 1.23 V vs. RHE.
Photoanode | Photocurrent density (mA cm-2) | Stability | Ref. |
---|---|---|---|
Ti:Fe2O3@CoFe-cMOFs | 3.32 | 10 h stability ca. 95% of the original | [ |
CoPi/H2TCPP/Ti-Fe2O3 | 1.84 | 2 h stability ca. 84% of the original | [ |
FexNi1‒xOOH/B/Ti-Fe2O3 | 3.39 | 2 h stability ca. 93% of the original | [ |
Co-Sil/CTF/Gd-Fe2O3 | 2.74 | 5 h stability ca. 99% of the original | [ |
CoAl-LDH/F-Fe2O3 | 2.46 | 6 h stability ca. 90% of the original the original | [ |
Ti: Fe2O3@g-C3N4 | 3.38 | 5 h stability ca. 85% of the original | [ |
Ti-Fe2O3/CoFePi | 2.15 | 3 h stability ca. 95% of the original | [ |
Co-Pi/CQDs/Fe2O3/TiO2 | 3.00 | 3 h stability ca. 100% of the original | [ |
F:FeOOH/Zr:Fe2O3 | 2.11 | 2 h stability ca. 100% of the original | [ |
Fe2O3/FePO4/FeOOH | 2.00 | 1.3 h stability ca. 99% of the original | [ |
Fe2O3/Fe2TiO5/CoFe | 1.25 | 24 h stability ca. 80% of the original | [ |
ZnFe2O4/Fe2O3 | 3.17 | 3 h stability ca. 86% of the original | [ |
NiFe(OH)x/PSi/Ge-Fe2O3 | 4.57 | 65 h stability ca. 97% of the original | [ |
Ta:Fe2O3@CaFe2O4/FeNiOx | 2.70 | 50 h stability ca. 88% of the original | [ |
NiCoP/Fe2O3 | 3.80 | 4 h stability ca. 99% of the original | [ |
ZIF-67/TiO2/Ti-Fe2O3 | 4.04 | 40 h stability ca. 90% of the original | this work |
Fig. 5. TPV spectra (a) and the enlarged part (b) of peak 1 in the TPV spectra of Ti-Fe2O3, TiO2/Ti-Fe2O3, and ZIF-67/TiO2/Ti-Fe2O3. (c) Work function measurements of pure Ti-Fe2O3 and MOF-derived TiO2. (d) Open-circuit photovoltage (Voc) of Ti-Fe2O3, TiO2/Ti-Fe2O3, and ZIF-67/TiO2/Ti-Fe2O3. PL spectra (e) and PA spectra (f) of Ti-Fe2O3 and TiO2/Ti-Fe2O3.
Fig. 6. fs-TA spectra of Ti-Fe2O3 (a) and TiO2/Ti-Fe2O3 (b) excited at 400 nm. Transient absorption decays observed at 625 nm for Ti-Fe2O3 (c) and TiO2/Ti-Fe2O3 (d).
Fig. 7. Bode phase plots (a), bulk resistance of the photoanode (R1) (b), charge transfer resistance (c) at the solid-liquid interface (R2), charge transfer efficiency (ηCT) (d) of Ti-Fe2O3, TiO2/Ti-Fe2O3, and ZIF-67/TiO2/Ti-Fe2O3. CV curves (e) of ZIF-67/TiO2/Ti-Fe2O3, and measured capacitive currents plotted as a function of scan rates (f) for Ti-Fe2O3, TiO2/Ti-Fe2O3, and ZIF-67/TiO2/Ti-Fe2O3.
Fig. 8. J-t curves at 1.23 V vs. RHE under chopping light (a), accumulated charge density (b), ηinj (c), Nyquist plots (d) at 1.0 V vs. RHE, and enlarged Nyquist plots (e) of Ti-Fe2O3, TiO2/Ti-Fe2O3, and ZIF-67/TiO2/Ti-Fe2O3.
|
[1] | Xianbiao Hou, Chen Yu, Tengjia Ni, Shucong Zhang, Jian Zhou, Shuixing Dai, Lei Chu, Minghua Huang. Constructing amorphous/crystalline NiFe-MOF@NiS heterojunction catalysts for enhanced water/seawater oxidation at large current density [J]. Chinese Journal of Catalysis, 2024, 61(6): 192-204. |
[2] | Junxian Bai, Rongchen Shen, Guijie Liang, Chaochao Qin, Difa Xu, Haobin Hu, Xin Li. Topology-induced local electric polarization in 2D thiophene-based covalent organic frameworks for boosting photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 225-236. |
[3] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
[4] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[5] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[8] | Jianxin Feng, Xuan Li, Yucheng Luo, Zhifang Su, Maoling Zhong, Baolan Yu, Jianying Shi. Microenvironment regulation of Ru(bda)L2 catalyst incorporated in metal-organic framework for effective photo-driven water oxidation [J]. Chinese Journal of Catalysis, 2023, 48(5): 127-136. |
[9] | Wen Zhang, Meng Tian, Haimiao Jiao, Hai-Ying Jiang, Junwang Tang. Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2022, 43(9): 2321-2331. |
[10] | Meiyu Zhang, Chaochao Qin, Wanjun Sun, Congzhao Dong, Jun Zhong, Kaifeng Wu, Yong Ding. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1818-1829. |
[11] | Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. Solution chemistry back-contact FTO/hematite interface engineering for efficient photocatalytic water oxidation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1247-1257. |
[12] | Jingjing Wang, Cheng Hu, Yihe Zhang, Hongwei Huang. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(5): 1277-1285. |
[13] | Xueqing Gao, Xiaomeng Liu, Shujiao Yang, Wei Zhang, Haiping Lin, Rui Cao. Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation [J]. Chinese Journal of Catalysis, 2022, 43(4): 1123-1130. |
[14] | Huapeng Li, Bin Sun, Tingting Gao, Huan Li, Yongqiang Ren, Guowei Zhou. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production [J]. Chinese Journal of Catalysis, 2022, 43(2): 461-471. |
[15] | Zhiming Zhou, Jinjin Chen, Qinlong Wang, Xingxing Jiang, Yan Shen. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode [J]. Chinese Journal of Catalysis, 2022, 43(2): 433-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||