Chinese Journal of Catalysis ›› 2025, Vol. 68: 282-299.DOI: 10.1016/S1872-2067(24)60170-1
• Articles • Previous Articles Next Articles
Baofei Haoa, Younes Ahmadia, Jan Szulejkoa, Tianhao Zhangb,c, Zhansheng Lub,c, Ki-Hyun Kima,*()
Received:
2024-08-10
Accepted:
2024-10-08
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: Supported by:
Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms[J]. Chinese Journal of Catalysis, 2025, 68: 282-299.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60170-1
Fig. 1. The electron transfer pathway for different heterojunction systems: type-II heterojunction (a) and S-scheme heterojunction (b). RP and OP denote reducing photocatalyst and oxidizing photocatalyst, respectively. In (b), the red dotted loop in the center is used to denote the recombination of electron-hole pairs, while the two blue dotted loops signify the preservation of electrons (in CB of RP) and holes (in VB of OP) for reduction and oxidation, respectively.
Order | AP code | HC code | Code of sample catalyst* | Composition | pH of synthesis solution | TiO2 mass in TiO2/Bi4O5Br2 composites (mg) | Bi4O5Br2 mass in TiO2/Bi4O5Br2 composites (mg) | Molar ratio of TiO2:Bi4O5Br2 | Amount of sample loaded on HC (mg) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | HC-T | TiO2 | TiO2 | 7 | — | — | — | 50 | |
2 | AP-B1 | HC-B1 | BOB-1 | BiOBr | 1 | — | — | — | 50 | |
3 | AP-B3 | HC-B3 | BOB-3 | BiOBr | 3 | — | — | — | 50 | |
4 | AP-B5 | HC-B5 | BOB-5 | BiOBr | 5 | — | — | — | 50 | |
5 | AP-B7 | HC-B7 | BOB-7 | BiOBr | 7 | — | — | — | 50 | |
6 | AP-B9 | HC-B9 | BOB-9 | Bi4O5Br2 | 9 | — | — | — | 50 | |
7 | AP-B11 | HC-B11 | BOB-11 | Bi4O5Br2 | 11 | — | — | — | 50 | |
8 | AP-1TB | HC-1TB | 1-TB-9 | Bi4O5Br2, TiO2 | 9 | 100 | 573 | 1.75 | 50 | |
9 | AP-3TB | HC-3TB | 3-TB-9 | Bi4O5Br2, TiO2 | 9 | 200 | 573 | 3.61 | 50 | |
10 | AP-5TB | HC-5TB | 5-TB-9 | Bi4O5Br2, TiO2 | 9 | 300 | 573 | 5.36 | 25−100 | |
11 | AP-7TB | HC-7TB | 7-TB-9 | Bi4O5Br2, TiO2 | 9 | 400 | 573 | 7.22 | 50 | |
12 | AP-9TB | HC-9TB | 9-TB-9 | Bi4O5Br2, TiO2 | 9 | 500 | 573 | 8.99 | 50 |
Table 1 Detailed information on the coding and preparation conditions of BOB- and TB-type photocatalysts used for the destruction of gaseous hydrogen sulfide in this work.
Order | AP code | HC code | Code of sample catalyst* | Composition | pH of synthesis solution | TiO2 mass in TiO2/Bi4O5Br2 composites (mg) | Bi4O5Br2 mass in TiO2/Bi4O5Br2 composites (mg) | Molar ratio of TiO2:Bi4O5Br2 | Amount of sample loaded on HC (mg) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | HC-T | TiO2 | TiO2 | 7 | — | — | — | 50 | |
2 | AP-B1 | HC-B1 | BOB-1 | BiOBr | 1 | — | — | — | 50 | |
3 | AP-B3 | HC-B3 | BOB-3 | BiOBr | 3 | — | — | — | 50 | |
4 | AP-B5 | HC-B5 | BOB-5 | BiOBr | 5 | — | — | — | 50 | |
5 | AP-B7 | HC-B7 | BOB-7 | BiOBr | 7 | — | — | — | 50 | |
6 | AP-B9 | HC-B9 | BOB-9 | Bi4O5Br2 | 9 | — | — | — | 50 | |
7 | AP-B11 | HC-B11 | BOB-11 | Bi4O5Br2 | 11 | — | — | — | 50 | |
8 | AP-1TB | HC-1TB | 1-TB-9 | Bi4O5Br2, TiO2 | 9 | 100 | 573 | 1.75 | 50 | |
9 | AP-3TB | HC-3TB | 3-TB-9 | Bi4O5Br2, TiO2 | 9 | 200 | 573 | 3.61 | 50 | |
10 | AP-5TB | HC-5TB | 5-TB-9 | Bi4O5Br2, TiO2 | 9 | 300 | 573 | 5.36 | 25−100 | |
11 | AP-7TB | HC-7TB | 7-TB-9 | Bi4O5Br2, TiO2 | 9 | 400 | 573 | 7.22 | 50 | |
12 | AP-9TB | HC-9TB | 9-TB-9 | Bi4O5Br2, TiO2 | 9 | 500 | 573 | 8.99 | 50 |
Fig. 2. Photocatalytic removal efficiency of H2S over the as-prepared photocatalysts under UV light irradiation (0.98 W power). (a) pH effect: BOB-1, BOB-3, BOB-5, BOB-7, BOB-9, and BOB-11; (b) catalyst mass effect: 1-TB-9, 3-TB-9, 5-TB-9, 7-TB-9, and 9-TB-9 and reference (TiO2).
Order | AP code | Sample | XH2S (%) | Quantum yield (molecules· photon-1) | Quantum yield (t=0) (molecules·photon-1) | Space time yield (molecules·phot on-1·mg-1) | Kinetic rate constant (second-1) | Stream removal efficiency (%) | CADR (L·h-1) | SCADR (L·h-1·g-1) | r10% (at X = 10%) (mmol g-1·h-1) | rmax (mmol·g-1· h-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | TiO2 | 31.3 | 1.01 E-3 | 8.58 E-3 | 2.02 E-5 | 4.78 E-4 | 0.37 | 27.6 | 552 | 1.22 | 0.22 |
2 | AP-B1 | BOB-1 | 34.3 | 1.11 E-3 | 5.92 E-3 | 2.22 E-5 | 5.76 E-4 | 0.44 | 34.2 | 682 | 0.65 | 0.24 |
3 | AP-B3 | BOB-3 | 41.0 | 1.33 E-3 | 5.92 E-3 | 2.66 E-5 | 8.15 E-4 | 0.62 | 48.6 | 972 | 0.7 | 0.29 |
4 | AP-B5 | BOB-5 | 54.7 | 1.77 E-3 | 5.51 E-3 | 3.54 E-5 | 1.14 E-3 | 0.87 | 68.4 | 1368 | 0.74 | 0.38 |
5 | AP-B7 | BOB-7 | 59.7 | 1.94 E-3 | 9.16 E-3 | 3.88 E-5 | 1.27 E-3 | 0.97 | 76.2 | 1524 | 1.47 | 0.42 |
6 | AP-B9 | BOB-9 | 81.0 | 2.62 E-3 | 1.25 E-2 | 5.24 E-5 | 2.37 E-3 | 1.81 | 143.4 | 2868 | 1.84 | 0.57 |
7 | AP-B11 | BOB-11 | 73.7 | 2.37 E-3 | 1.40 E-2 | 4.74 E-5 | 1.84 E-3 | 1.40 | 111 | 2220 | 2.3 | 0.52 |
8 | AP-1TB | 1-TB-9 | 94.7 | 3.06 E-3 | 1.88 E-2 | 6.12 E-5 | 3.67 E-3 | 2.87 | 224.4 | 4488 | 2.91 | 0.66 |
9 | AP-3TB | 3-TB-9 | 96.3 | 3.11 E-3 | 1.95 E-2 | 6.22 E-5 | 3.70 E-3 | 2.90 | 226.2 | 4524 | 1.97 | 0.67 |
10 | AP-5TB | 5-TB-9 | 100 | 3.24 E-3 | 1.51 E-2 | 6.48 E-5 | 4.53 E-3 | 3.55 | 277.2 | 5544 | 1.85 | 0.70 |
11 | AP-7TB | 7-TB-9 | 95.7 | 3.10 E-3 | 2.36 E-2 | 6.20 E-5 | 3.36 E-3 | 2.63 | 205.8 | 4116 | 3.02 | 0.67 |
12 | AP-9TB | 9-TB-9 | 92.7 | 3.00 E-3 | 1.79 E-2 | 6.00 E-5 | 3.32 E-3 | 2.60 | 202.8 | 4056 | 2.64 | 0.65 |
Table 2 The calculated degradation efficiency, quantum yield, space time yield, kinetic rate constant, stream removal efficiency, CADR, r 10% (at X = 10%), and rmax (at the max X) of various photocatalysts.
Order | AP code | Sample | XH2S (%) | Quantum yield (molecules· photon-1) | Quantum yield (t=0) (molecules·photon-1) | Space time yield (molecules·phot on-1·mg-1) | Kinetic rate constant (second-1) | Stream removal efficiency (%) | CADR (L·h-1) | SCADR (L·h-1·g-1) | r10% (at X = 10%) (mmol g-1·h-1) | rmax (mmol·g-1· h-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | TiO2 | 31.3 | 1.01 E-3 | 8.58 E-3 | 2.02 E-5 | 4.78 E-4 | 0.37 | 27.6 | 552 | 1.22 | 0.22 |
2 | AP-B1 | BOB-1 | 34.3 | 1.11 E-3 | 5.92 E-3 | 2.22 E-5 | 5.76 E-4 | 0.44 | 34.2 | 682 | 0.65 | 0.24 |
3 | AP-B3 | BOB-3 | 41.0 | 1.33 E-3 | 5.92 E-3 | 2.66 E-5 | 8.15 E-4 | 0.62 | 48.6 | 972 | 0.7 | 0.29 |
4 | AP-B5 | BOB-5 | 54.7 | 1.77 E-3 | 5.51 E-3 | 3.54 E-5 | 1.14 E-3 | 0.87 | 68.4 | 1368 | 0.74 | 0.38 |
5 | AP-B7 | BOB-7 | 59.7 | 1.94 E-3 | 9.16 E-3 | 3.88 E-5 | 1.27 E-3 | 0.97 | 76.2 | 1524 | 1.47 | 0.42 |
6 | AP-B9 | BOB-9 | 81.0 | 2.62 E-3 | 1.25 E-2 | 5.24 E-5 | 2.37 E-3 | 1.81 | 143.4 | 2868 | 1.84 | 0.57 |
7 | AP-B11 | BOB-11 | 73.7 | 2.37 E-3 | 1.40 E-2 | 4.74 E-5 | 1.84 E-3 | 1.40 | 111 | 2220 | 2.3 | 0.52 |
8 | AP-1TB | 1-TB-9 | 94.7 | 3.06 E-3 | 1.88 E-2 | 6.12 E-5 | 3.67 E-3 | 2.87 | 224.4 | 4488 | 2.91 | 0.66 |
9 | AP-3TB | 3-TB-9 | 96.3 | 3.11 E-3 | 1.95 E-2 | 6.22 E-5 | 3.70 E-3 | 2.90 | 226.2 | 4524 | 1.97 | 0.67 |
10 | AP-5TB | 5-TB-9 | 100 | 3.24 E-3 | 1.51 E-2 | 6.48 E-5 | 4.53 E-3 | 3.55 | 277.2 | 5544 | 1.85 | 0.70 |
11 | AP-7TB | 7-TB-9 | 95.7 | 3.10 E-3 | 2.36 E-2 | 6.20 E-5 | 3.36 E-3 | 2.63 | 205.8 | 4116 | 3.02 | 0.67 |
12 | AP-9TB | 9-TB-9 | 92.7 | 3.00 E-3 | 1.79 E-2 | 6.00 E-5 | 3.32 E-3 | 2.60 | 202.8 | 4056 | 2.64 | 0.65 |
Order | AP code | Sample | Parameters | 0 s | 60 s | 120 s | 240 s | 360 s | 480 s | 600 s |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-5TB | 5-TB-9 | QY(t) | 1.51 E-2 | 8.52 E-3 | 7.74 E-3 | 6.17 E-3 | 5.05 E-3 | 4.29 E-3 | 3.73 E-3 |
SQY(t) | 1.51 E-3 | 1.09 E-3 | 1.29 E-3 | 1.7 E-3 | 2.33 E-3 | 3.8 E-3 | 1.0 E-3 | |||
2 | AP-T | TiO2 | QY(t) | 8.58 E-3 | 5.16 E-3 | 3.16 E-3 | 2.03 E-3 | 1.53 E-3 | 1.27 E-3 | 1.1 E-3 |
SQY(t) | 8.58 E-4 | 5.96 E-4 | 3.78 E-4 | 2.57 E-4 | 2.00 E-4 | 1.73 E-4 | 1.53 E-4 |
Table 3 The calculated QY(t) and SQY(t) of the best photocatalyst (5-TB-9) and pristine TiO2.
Order | AP code | Sample | Parameters | 0 s | 60 s | 120 s | 240 s | 360 s | 480 s | 600 s |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-5TB | 5-TB-9 | QY(t) | 1.51 E-2 | 8.52 E-3 | 7.74 E-3 | 6.17 E-3 | 5.05 E-3 | 4.29 E-3 | 3.73 E-3 |
SQY(t) | 1.51 E-3 | 1.09 E-3 | 1.29 E-3 | 1.7 E-3 | 2.33 E-3 | 3.8 E-3 | 1.0 E-3 | |||
2 | AP-T | TiO2 | QY(t) | 8.58 E-3 | 5.16 E-3 | 3.16 E-3 | 2.03 E-3 | 1.53 E-3 | 1.27 E-3 | 1.1 E-3 |
SQY(t) | 8.58 E-4 | 5.96 E-4 | 3.78 E-4 | 2.57 E-4 | 2.00 E-4 | 1.73 E-4 | 1.53 E-4 |
Fig. 3. Photocatalytic removal efficiency of H2S by 5-TB-9 under various conditions. (a) Catalyst dosage; (b) H2S concentration; (c) gas flow velocity; (d) relative humidity.
Fig. 4. Microscopic characterization of the catalysts tested in this work. TEM images of BOB-1 (a), BOB-9 (c), TiO2 (e) and 5-TB-9 (g). HRTEM images of BOB-1 (b), BOB-9 (d), TiO2 (f), and 5-TB-9 (h). (i) HAADF-TEM and elemental maps of 5-TB-9.
Order | Photocatalyst mass (mg) | H2S concentration (ppm) | Flow rate (L·min-1) | Relative humidity (%) | XH2S (%) | Kinetic rate constant (s-1) |
---|---|---|---|---|---|---|
1 | 25 | 10 | 130 | 0 | 88.0 | 2.31 E-3 |
2 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
3 | 75 | 10 | 130 | 0 | 100 | 5.07 E-3 |
4 | 100 | 10 | 130 | 0 | 100 | 5.15 E-3 |
5 | 50 | 5 | 130 | 0 | 100 | 6.09 E-3 |
6 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
7 | 50 | 15 | 130 | 0 | 99.3 | 5.58 E-3 |
8 | 50 | 20 | 130 | 0 | 94.8 | 3.29 E-3 |
9 | 50 | 10 | 100 | 0 | 99.0 | 4.53 E-3 |
10 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
11 | 50 | 10 | 160 | 0 | 99.7 | 4.72 E-3 |
12 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
13 | 50 | 10 | 130 | 40 | 100 | 6.23 E-3 |
14 | 50 | 10 | 130 | 60 | 100 | 6.22 E-2 |
15 | 50 | 10 | 130 | 80 | 98.7 | 4.31 E-2 |
Table 4 Photocatalytic performance evaluation of 5-TB-9 under various conditions.
Order | Photocatalyst mass (mg) | H2S concentration (ppm) | Flow rate (L·min-1) | Relative humidity (%) | XH2S (%) | Kinetic rate constant (s-1) |
---|---|---|---|---|---|---|
1 | 25 | 10 | 130 | 0 | 88.0 | 2.31 E-3 |
2 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
3 | 75 | 10 | 130 | 0 | 100 | 5.07 E-3 |
4 | 100 | 10 | 130 | 0 | 100 | 5.15 E-3 |
5 | 50 | 5 | 130 | 0 | 100 | 6.09 E-3 |
6 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
7 | 50 | 15 | 130 | 0 | 99.3 | 5.58 E-3 |
8 | 50 | 20 | 130 | 0 | 94.8 | 3.29 E-3 |
9 | 50 | 10 | 100 | 0 | 99.0 | 4.53 E-3 |
10 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
11 | 50 | 10 | 160 | 0 | 99.7 | 4.72 E-3 |
12 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
13 | 50 | 10 | 130 | 40 | 100 | 6.23 E-3 |
14 | 50 | 10 | 130 | 60 | 100 | 6.22 E-2 |
15 | 50 | 10 | 130 | 80 | 98.7 | 4.31 E-2 |
Fig. 9. DFT simulations of the catalyst samples investigated in this research. Calculated band structures of 5-TB-9 (a), TiO2 (b), and Bi4O5Br2 (c). DOS results of 5-TB-9 (d), TiO2 (e), and Bi4O5Br2 (f). Calculated work functions of the as-prepared TiO2 (g) and Bi4O5Br2 (h) samples. (i) The charge distribution difference of 5-TB-9.
Fig. 11. In situ FTIR spectra for the degradation of H2S upon 5-TB-9 under different conditions. (a) Dark; (b) humid air; (c) dry air; (d) dry N2; (e) 10% O2; (f) humid N2.
Fig. 12. The possible transfer pathways of charge carriers in S-scheme heterojunction studied in this research (i.e., TiO2/Bi4O5Br2) in reference to other type of heterojunction. (a) Type-II heterojunction (as reference); (b) S-scheme heterojunction.
Order | Photocatalyst | Pollution | Light source | Reactor | Catalyst mass (mg) | Concentration (ppm) | Reaction duration (min) | Conversion (%) | rmax (mmol·g-1·h-1) | SCADR (L·h-1·g-1) | Quantum yield (molecules/ photon) | Space time yield (molecules/photon·mg) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | B-TiO2/LDH | H2S | Xenon lamp (300 w) | fixed-bed tube | 100 | 100 | 60 | 96.4 | — | — | 2.07 E-6 | 2.14 E-8 | [ |
2 | Carbon-doped boron nitride | H2S | LED lamp (40 W) | fixed-bed tube | 40 | 20 | 80 | 99 | — | — | 2.24 E-6 | 5.60 E-8 | [ |
3 | CdS/C3N4 | H2S | Xenon lamp (300 w) | fixed-bed tube | 50 | 10 | 30 | 99.9 | — | — | 2.58 E-6 | 5.16 E-8 | [ |
4 | SiO2@α-Fe2O3@COF | H2S | B-9 lamp (no mention of light intensity) | fixed-bed tube | 40 | 20 | 120 | 95.4 | — | — | — | — | [ |
5 | CNFs@TiO2 @MIL-100 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | — | 200 | 140 | 93.5 | — | — | — | — | [ |
6 | Mn-TiO2 | H2S | Two VUV lamps (4 W) | fixed-bed tube | 1000 | 150 | 60 | 89.9 | — | — | 3.78 E-3 | 3.78 E-6 | [ |
7 | TiO2@MIL-101 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | 500 | 200 | — | 90 | — | — | — | — | [ |
8 | Pt@Cu-TiO2 | FA | 0.98 W UV light | 17 L chamber | 50 | 0.5 | 10 | 100 | 0.042 | 1.94 E -4 | 3.88 E -6 | [ | |
9 | TiO2-diatomite | FA | 250 W UV lamp | batch reactor | 1000 | 0.79 | 180 | 90.9 | 3.5 E -3 | 160 | 8.91E-07 | 8.91E-10 | [ |
10 | rGO-TiO2 | FA | xenon lamp | stainless steel reactor | 500 | 0.5 | 240 | 88.3 | 5.80 E-7 | 2. 96E-2 | 3.21 E-10 | 6.43 E-13 | [ |
11 | Pt-TiO2 | FA | visible light source | batch reactor | 100 | 400 | 60 | 93.8 | — | — | — | — | [ |
12 | Pt@TiO2 | FA | 18 W daylight lamp | reaction chamber | 20 | 10 | 240 | 98.3 | — | 22.3 | 3.09 E-07 | 1.55 E-08 | [ |
13 | 5-TB-9 | H2S | 0.98 W UV light | 17 L chamber | 50 | 10 | 12 | 100 | 0.70 | 5544 | 3.24 E-3 | 6.48 E-5 | this work |
Table 5 Performance comparison of 5-TB-9 with photocatalysts reported recently.
Order | Photocatalyst | Pollution | Light source | Reactor | Catalyst mass (mg) | Concentration (ppm) | Reaction duration (min) | Conversion (%) | rmax (mmol·g-1·h-1) | SCADR (L·h-1·g-1) | Quantum yield (molecules/ photon) | Space time yield (molecules/photon·mg) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | B-TiO2/LDH | H2S | Xenon lamp (300 w) | fixed-bed tube | 100 | 100 | 60 | 96.4 | — | — | 2.07 E-6 | 2.14 E-8 | [ |
2 | Carbon-doped boron nitride | H2S | LED lamp (40 W) | fixed-bed tube | 40 | 20 | 80 | 99 | — | — | 2.24 E-6 | 5.60 E-8 | [ |
3 | CdS/C3N4 | H2S | Xenon lamp (300 w) | fixed-bed tube | 50 | 10 | 30 | 99.9 | — | — | 2.58 E-6 | 5.16 E-8 | [ |
4 | SiO2@α-Fe2O3@COF | H2S | B-9 lamp (no mention of light intensity) | fixed-bed tube | 40 | 20 | 120 | 95.4 | — | — | — | — | [ |
5 | CNFs@TiO2 @MIL-100 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | — | 200 | 140 | 93.5 | — | — | — | — | [ |
6 | Mn-TiO2 | H2S | Two VUV lamps (4 W) | fixed-bed tube | 1000 | 150 | 60 | 89.9 | — | — | 3.78 E-3 | 3.78 E-6 | [ |
7 | TiO2@MIL-101 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | 500 | 200 | — | 90 | — | — | — | — | [ |
8 | Pt@Cu-TiO2 | FA | 0.98 W UV light | 17 L chamber | 50 | 0.5 | 10 | 100 | 0.042 | 1.94 E -4 | 3.88 E -6 | [ | |
9 | TiO2-diatomite | FA | 250 W UV lamp | batch reactor | 1000 | 0.79 | 180 | 90.9 | 3.5 E -3 | 160 | 8.91E-07 | 8.91E-10 | [ |
10 | rGO-TiO2 | FA | xenon lamp | stainless steel reactor | 500 | 0.5 | 240 | 88.3 | 5.80 E-7 | 2. 96E-2 | 3.21 E-10 | 6.43 E-13 | [ |
11 | Pt-TiO2 | FA | visible light source | batch reactor | 100 | 400 | 60 | 93.8 | — | — | — | — | [ |
12 | Pt@TiO2 | FA | 18 W daylight lamp | reaction chamber | 20 | 10 | 240 | 98.3 | — | 22.3 | 3.09 E-07 | 1.55 E-08 | [ |
13 | 5-TB-9 | H2S | 0.98 W UV light | 17 L chamber | 50 | 10 | 12 | 100 | 0.70 | 5544 | 3.24 E-3 | 6.48 E-5 | this work |
|
[1] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production [J]. Chinese Journal of Catalysis, 2025, 68(1): 103-145. |
[2] | Shijie Li, Changjun You, Fang Yang, Guijie Liang, Chunqiang Zhuang, Xin Li. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 68(1): 259-271. |
[3] | Yaqiang Wu, Jianuo Li, Wei-Kean Chong, Zhenhua Pan, Qian Wang. Novel materials and techniques for photocatalytic water splitting developed by Professor Kazunari Domen [J]. Chinese Journal of Catalysis, 2025, 68(1): 1-50. |
[4] | Zheng Lin, Wanting Xie, Mengjing Zhu, Changchun Wang, Jia Guo. Boosting photocatalytic hydrogen evolution enabled by SiO2-supporting chiral covalent organic frameworks with parallel stacking sequence [J]. Chinese Journal of Catalysis, 2024, 64(9): 87-97. |
[5] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[6] | Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 64(9): 152-165. |
[7] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[8] | Yanyan Zhao, Chunyan Yang, Shumin Zhang, Guotai Sun, Bicheng Zhu, Linxi Wang, Jianjun Zhang. Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy [J]. Chinese Journal of Catalysis, 2024, 63(8): 258-269. |
[9] | Fulin Wang, Xiangwei Li, Kangqiang Lu, Man Zhou, Changlin Yu, Kai Yang. Molten salt construction of core-shell structured S-scheme CuInS2@CoS2 heterojunction to boost charge transfer for efficient photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 63(8): 190-201. |
[10] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[11] | Chao Li, Shuo Wang, Yuan Liu, Xihe Huang, Yan Zhuang, Shuhong Wu, Ying Wang, Na Wen, Kaifeng Wu, Zhengxin Ding, Jinlin Long. Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 63(8): 164-175. |
[12] | Shiwen Du, Fuxiang Zhang. General applications of density functional theory in photocatalysis [J]. Chinese Journal of Catalysis, 2024, 61(6): 1-36. |
[13] | Mengzhen Ren, Tianfu Liu, Yuanyuan Dong, Zheng Li, Jiaxin Yang, Zhenheng Diao, Hongjin Lv, Guo-Yu Yang. Near-unity photocatalytic dehydrocoupling of thiophenols into disulfides and hydrogen using coupled CdS Nanorods and Ni-containing polyoxometalate [J]. Chinese Journal of Catalysis, 2024, 61(6): 312-321. |
[14] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
[15] | Wenjian Fang, Jiawei Yan, Zhidong Wei, Junying Liu, Weiqi Guo, Zhi Jiang, Wenfeng Shangguan. Account of doping photocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 1-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||