Chinese Journal of Catalysis ›› 2024, Vol. 61: 312-321.DOI: 10.1016/S1872-2067(24)60025-2
• Articles • Previous Articles Next Articles
Mengzhen Rena, Tianfu Liua, Yuanyuan Donga,*(), Zheng Lia, Jiaxin Yanga,b, Zhenheng Diaob, Hongjin Lva,*(
), Guo-Yu Yanga
Received:
2024-02-15
Accepted:
2024-03-26
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: E-mail: Supported by:
Mengzhen Ren, Tianfu Liu, Yuanyuan Dong, Zheng Li, Jiaxin Yang, Zhenheng Diao, Hongjin Lv, Guo-Yu Yang. Near-unity photocatalytic dehydrocoupling of thiophenols into disulfides and hydrogen using coupled CdS Nanorods and Ni-containing polyoxometalate[J]. Chinese Journal of Catalysis, 2024, 61: 312-321.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60025-2
Fig. 1. (a) PXRD pattern of CdS NRs. The high-resolution Cd 3d (b) and S 2p (c) XPS spectra of CdS NRs. TEM (d) and HR-TEM (e) images of CdS NRs. (f) The lattice fringes of CdS NRs in the enlarged image of the red area in (e). The HAADF-STEM (g) and element mapping (h,i) images of CdS NRs.
Fig. 2. The photocatalytic dehydrocoupling of 4-MTP as a function of usage amount of CdS NRs (a,b) and the H2O content (c,d). Standard conditions: 50 μmol 4-MTP, 10 mg CdS NRs, 6 mL CH3CN/H2O (1% vol. H2O), 10 μmol L-1 Ni4P2, under the illumination of blue LED light (450 nm) at 20 °C, 3 h, and using CH4 as an internal standard for GC quantification of H2 gas.
Fig. 3. (a) Comparison experiments using Ni4P2 and NiCl2 (40 μmol L?1, equivalent moles of Ni) as H2 evolution catalysts for 4 h photocatalysis. (b, c) The effects of the concentration of Ni4P2 on the photocatalytic activities. Standard conditions: 50 μmol 4-MTP, 10 mg CdS NRs, 6 mL CH3CN/H2O (1% vol. H2O), 10 μmol L?1 Ni4P2, under the illumination of blue LED light (450 nm) at 20 °C, 3 h, and using CH4 as an internal standard for GC quantification of H2gas. (d) The time profiles of the photooxidative dehydrocoupling of 4-MTP. (e) The photocatalytic recycling tests using fresh and isolated 10 mg CdS NRs + 10 μmol L?1 Ni4P2 catalyst. (f) FT-IR spectra of Ni4P2 before and after photocatalytic reaction.
Entry | -R | Con. b (%) | Sel. c (%) | H2 (μmol) | Disulfides (μmol) | e-/h+ d |
---|---|---|---|---|---|---|
1 | -NH2 | 62.75 | 99.64 | 16.59 | 16.81 | 0.99 |
2 | -C2H5 | 62.89 | 97.60 | 15.76 | 15.73 | 1.00 |
3 | -CH3 | 77.23 | 98.99 | 19.25 | 19.31 | 1.00 |
4 | -Cl | 27.34 | 98.50 | 7.17 | 6.84 | 1.05 |
5 | -F | 32.26 | 98.94 | 7.77 | 7.98 | 0.97 |
Table 1 The photooxidative dehydrocoupling of other thiophenols using Ni4P2/CdS catalytic system a.
Entry | -R | Con. b (%) | Sel. c (%) | H2 (μmol) | Disulfides (μmol) | e-/h+ d |
---|---|---|---|---|---|---|
1 | -NH2 | 62.75 | 99.64 | 16.59 | 16.81 | 0.99 |
2 | -C2H5 | 62.89 | 97.60 | 15.76 | 15.73 | 1.00 |
3 | -CH3 | 77.23 | 98.99 | 19.25 | 19.31 | 1.00 |
4 | -Cl | 27.34 | 98.50 | 7.17 | 6.84 | 1.05 |
5 | -F | 32.26 | 98.94 | 7.77 | 7.98 | 0.97 |
Fig. 4. UV-vis spectrum (a) and the Mott-Schottky plots (b) of CdS NRs. The inset in (a) is the Tauc plots for CdS NRs. (c) The schematic potential diagram of the photooxidation of 4-MTP integrated with H2 evolution using Ni4P2/CdS catalytic system. The PL spectra (d), fittings of normalized photoluminescence decay kinetics (e), and the photocurrent tests (f) of CdS NRs, CdS NRs + Ni4P2, and CdS NRs + substrate.
Fig. 5. (a) The photocatalytic activities of control experiments. (b) The EPR signals of the reaction solution in the dark and light illustration after 5 min in the presence of CdS NRs and Ni4P2/CdS.
Scheme 2. The proposed photocatalytic mechanism of the present Ni4P2/CdS catalytic system towards the oxidative dehydrocoupling of 4-MTP and H2 evolution reaction.
|
[1] | Shiwen Du, Fuxiang Zhang. General applications of density functional theory in photocatalysis [J]. Chinese Journal of Catalysis, 2024, 61(6): 1-36. |
[2] | Xuyu Luo, Ying Wang, Guang Yang, Lu Liu, Shiying Guo, Yi Cui, Xiaoyong Xu. Atomically tailoring synergistic active centers on molybdenum sulfide basal planes for alkaline hydrogen generation [J]. Chinese Journal of Catalysis, 2024, 61(6): 281-290. |
[3] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
[4] | Chenyu Du, Jianping Sheng, Fengyi Zhong, Ye He, Vitaliy P. Guro, Yanjuan Sun, Fan Dong. Rational design and mechanistic insights of advanced photocatalysts for CO2-to-C2+ production: Status and challenges [J]. Chinese Journal of Catalysis, 2024, 60(5): 25-41. |
[5] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[6] | Haoming Huang, Qingqing Lin, Qing Niu, Jiangqi Ning, Liuyi Li, Jinhong Bi, Yan Yu. Metal-free photocatalytic reduction of CO2 on a covalent organic framework-based heterostructure [J]. Chinese Journal of Catalysis, 2024, 60(5): 201-208. |
[7] | Wenjian Fang, Jiawei Yan, Zhidong Wei, Junying Liu, Weiqi Guo, Zhi Jiang, Wenfeng Shangguan. Account of doping photocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 1-24. |
[8] | Linghui Meng, Chen Zhao, Hongyu Chu, Yu-Hang Li, Huifen Fu, Peng Wang, Chong-Chen Wang, Hongwei Huang. Synergetic piezo-photocatalysis of g-C3N4/PCN-224 core-shell heterojunctions for ultrahigh H2O2 generation [J]. Chinese Journal of Catalysis, 2024, 59(4): 346-359. |
[9] | Baolong Zhang, Fangxuan Liu, Bin Sun, Tingting Gao, Guowei Zhou. Hierarchical S-scheme heterojunctions of ZnIn2S4-decorated TiO2 for enhancing photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 334-345. |
[10] | Entian Cui, Yulian Lu, Jizhou Jiang, Arramel , Dingsheng Wang, Tianyou Zhai. Tailoring CuNi heteronuclear diatomic catalysts: Precision in structural design for exceptionally selective CO2 photoreduction to ethanol [J]. Chinese Journal of Catalysis, 2024, 59(4): 126-136. |
[11] | Junxian Bai, Rongchen Shen, Guijie Liang, Chaochao Qin, Difa Xu, Haobin Hu, Xin Li. Topology-induced local electric polarization in 2D thiophene-based covalent organic frameworks for boosting photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 225-236. |
[12] | Tingting Yang, Bin Wang, Paul K. Chu, Jiexiang Xia, Huaming Li. Self-sacrificing MOF-derived hierarchical porous In2S3 nanostructures with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2024, 59(4): 204-213. |
[13] | Heng Zhou, Rui Zhang, Caiyan Yue, Xu Wu, Qiong Yan, Hao Wang, Heng Zhang, Tianyi Ma. Enhanced charge transfer over sustainable biochar decorated Bi2WO6 composite photocatalyst for highly efficient water decontamination [J]. Chinese Journal of Catalysis, 2024, 59(4): 169-184. |
[14] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[15] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||