Chinese Journal of Catalysis ›› 2024, Vol. 58: 146-156.DOI: 10.1016/S1872-2067(23)64596-6
• Article • Previous Articles Next Articles
Zhentao Tua, Xiaoyang Hea, Xuan Liua, Dengke Xionga, Juan Zuob,*(), Deli Wuc, Jianying Wanga,*(
), Zuofeng Chena,*(
)
Received:
2023-11-11
Accepted:
2024-01-06
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: zuojuan@xmut.edu.cn (J. Zuo),wang_jianying@tongji.edu.cn (J. Wang),zfchen@tongji.edu.cn (Z. Chen).
Supported by:
Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production[J]. Chinese Journal of Catalysis, 2024, 58: 146-156.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64596-6
Fig. 1. SEM images of Ni2P (a,b) and W-Ni2P (c,d) at low and high magnifications. TEM (e) and HRTEM (f) images of W-Ni2P. (g) Elemental mapping images of Ni, P and W on W-Ni2P.
Fig. 2. (a) XRD patterns of W-Ni2P and Ni2P. XPS spectra for W 4f (b), P 2p (c), and Ni 2p (d). Ni K-edge XANES spectra (e) and R space Fourier transform EXAFS spectra (f) of Ni foil, NiO, Ni2P, and W-Ni2P. (g) Wavelet transform plots of Ni foil, NiO, Ni2P, and W-Ni2P.
Fig. 3. HER polarization curves (a) and Tafel plots (b) for various catalysts in 1.0 mol L?1 KOH solution. (c) Nyquist plots of various catalysts at an overpotential of 110 mV; the inset shows the equivalent circuit diagram. (d) CV curves for W-Ni2P at scan rates from 20 to 120 mV s-1. (e) Cdl values of various catalysts. (f) j-t curve of W-Ni2P and LSV curves before and after 3000 CV scan cycles.
Fig. 4. (a) LSV curves of W-Ni2P in 1.0 mol L?1 KOH with and without 25 mmol L?1 BA. (b) Potential comparison of BAOR and OER at different current densities. LSV curves (c) and Tafel plots (d) for W-Ni2P, Ni2P, W-Ni LDH, Ni LDH and RuO2 in 1.0 mol L?1 KOH containing 25 mmol L?1 BA. (e) 1H NMR spectra for BA and its oxidation products during electrolysis. (f) 1H NMR local magnification from 7.0 to 8 δ. (g) 13C NMR spectra for BA and its oxidation products during electrolysis. (h) Nyquist plots of various catalysts at an overpotential of 110 mV; the inset shows the equivalent circuit diagram. (i) j-t curve (inset) of W-Ni2P and LSV curves before and after stability test.
Fig. 5. Potential dependent, in-situ Raman spectra at W-Ni2P in 1.0 mol L?1 KOH without (a) and with (b) 25 mmol L?1 BA. (c) In-situ Raman spectra at 1.45 V after addition of 25 mmol L?1 BA. (d) In-situ FTIR spectra of W-Ni2P at different applied potentials for the BAOR. (e) In-situ FTIR spectra of W-Ni2P at different times following (d) at the open circuit potential.
Fig. 6. (a) Schematic diagram of a two-electrode electrolyzer with W-Ni2P as the anode and cathode. Polarization curves (b) and comparison of cell voltages (c) for different current densities achieved at W-Ni2P electrodes in 1.0 mol L-1 KOH with and without 25 mmol L-1 BA. (d) Chronopotentiometric curves of BA oxidation at W-Ni2P at 20 mA cm-2 in 1.0 mol L-1 KOH containing 25 mmol L-1 BA; the inset illustrates the change in voltage before and after electrolysis. (e) Optical photo of a HER||BAOR electrolytic cell powered by a small solar cell.
Fig. 7. Theoretical models of W-Ni2P (a), Ni2P (b), W-Ni2P@W-NiOOH (c) and Ni2P@NiOOH (d). (e) The free energy diagram of HER on the W-Ni2P and Ni2P. (f) The partial density of states (PDOS) of W-Ni2P and Ni2P. (g) Benzylamine adsorption energy on W-Ni2P@W-NiOOH and Ni2P@NiOOH. (h) Electron density difference at the W-Ni2P@W-NiOOH interface. (i) The free energy diagram of BAOR on the W-Ni2P and Ni2P.
|
[1] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[2] | Yibo Guo, Yuanyuan Xue, Zhen Zhou. Revolutionizing Zn-Air batteries with chainmail catalysts: Ultrathin carbon-encapsulated FeNi alloys on N-doped graphene for enhanced oxygen electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 206-215. |
[3] | Bing Zeng, Fengwei Huang, Yuexin Wang, Kanghui Xiong, Xianjun Lang. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 226-236. |
[4] | Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 57(2): 105-113. |
[5] | Bai-Chuan Zhou, Wen-Cui Li, Jia Wang, Dan-Hui Sun, Shi-Yu Xiang, Xin-Qian Gao, An-Hui Lu. PO43- coordinated Co2+ species on yttrium phosphate boosting the valorization of ethanol to butadiene [J]. Chinese Journal of Catalysis, 2024, 56(1): 166-175. |
[6] | Zhe Wang, Chunpeng Wang, Bing Lu, Zhirong Chen, Yong Wang, Shanjun Mao. Electronic perturbation-promoted interfacial pathway for facile C-H dissociation [J]. Chinese Journal of Catalysis, 2024, 56(1): 130-138. |
[7] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[8] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[9] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[10] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[11] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[12] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[13] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[14] | Yanan Xing, Leilei Kang, Jingyuan Ma, Qike Jiang, Yang Su, Shengxin Zhang, Xiaoyan Xu, Lin Li, Aiqin Wang, Zhi-Pan Liu, Sicong Ma, Xiao Yan Liu, Tao Zhang. Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 48(5): 164-174. |
[15] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||