Chinese Journal of Catalysis ›› 2024, Vol. 58: 157-167.DOI: 10.1016/S1872-2067(23)64607-8
• Article • Previous Articles Next Articles
Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang*(), Kai Dai*(
)
Received:
2023-10-02
Accepted:
2024-01-19
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: daikai940@chnu.edu.cn (K. Dai),jfzhang@chnu.edu.cn (J. Zhang).
About author:
1Contributed equally to this work.
Supported by:
Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production[J]. Chinese Journal of Catalysis, 2024, 58: 157-167.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64607-8
Fig. 3. SEM images of CdTMT (a), ZnTMT (b), and 50% CdTMT/ZnTMT (c,d). (e,f) TEM images of 50% CdTMT/ZnTMT. (g) HRTEM image of 50% CdTMT/ZnTMT. Lattice fringe of CdTMT (h) and ZnTMT (i). Element mappings of Cd (j), Zn (k), C (l), S (m), and N (n).
Fig. 4. (a) XPS full spectra of CdTMT, ZnTMT, and 50% CdTMT/ZnTMT. High-resolution XPS of C 1s (b), S 2p (c), N 1s (d), Zn 2p (e), and Cd 3d (f). High-resolution XPS under a 365 nm LED irradiating including C 1s (g), Zn 3p (h), and Cd 3d (i).
Fig. 5. (a) The UV-vis DRS of CdTMT, ZnTMT, and CdTMT/ZnTMT. (b) Plots of the (α?ν)1/2 vs. photon energy (?ν) for CdTMT and ZnTMT. (c) Mott Schottky diagrams of CdTMT and ZnTMT. (d) CB and VB position diagrams of samples of CdTMT and ZnTMT.
Fig. 8. (a) AFM height image in the dark. (b) Surface potential images in the dark. (c) AFM height image in the light. (d) Surface potential images in the light. (e) The corresponding line profiles of surface potential.
Fig. 10. Side view (a,b) and Top view (c) of the charge density difference of CdTMT/ZnTMT with an isosurface of 2*10-4 e ??3. (d) Planar-averaged electron density difference Δρ(z) for CdTMT/ZnTMT.
Fig. 11. DFT calculation results on the work function and Fermi level of CdTMT (a) and ZnTMT (b). (c-e) Schematic diagram of the photocatalytic mechanism of the composite.
|
[1] | Lele Wang, Wenyao Cheng, Jiaxin Wang, Juan Yang, Qinqin Liu. Construction of intramolecular and interfacial built-in electric field in a donor-acceptor conjugated polymers-based S-scheme heterojunction for high photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2024, 58(3): 194-205. |
[2] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[3] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
[4] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[5] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[6] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[7] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[8] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[9] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[10] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[11] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[12] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[13] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[14] | Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 55(12): 137-158. |
[15] | Pengye Zhang, Wenjin Dong, Yuanyuan Zhang, Li-Nan Zhao, Hualei Yuan, Chuanjun Wang, Wenshuo Wang, Hanxiao Wang, Hongyu Zhang, Jian Liu. Metalated carbon nitride with facilitated electron transfer pathway for selective NADH regeneration and photoenzyme-coupled CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 54(11): 188-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||