Chinese Journal of Catalysis ›› 2024, Vol. 58: 168-179.DOI: 10.1016/S1872-2067(23)64606-6
• Article • Previous Articles Next Articles
Nikolay Nesterov*(), Alexey Philippov*(
), Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov
Received:
2023-11-28
Accepted:
2024-01-19
Online:
2024-03-18
Published:
2024-03-28
Contact:
*nesterov@catalysis.ru (N. Nesterov),philippov@catalysis.ru (A. Philippov).
Nikolay Nesterov, Alexey Philippov, Vera Pakharukova, Evgeny Gerasimov, Stanislav Yakushkin, Oleg Martyanov. Primary alcohols as killers of Ni-based catalysts in transfer hydrogenation[J]. Chinese Journal of Catalysis, 2024, 58: 168-179.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64606-6
Sample | Alcohol | Temperature, °C | Pressure, bar |
---|---|---|---|
Ni_Alum_2-Pr_250 | 2-PrOH | 250 | 78‒81 |
Ni_Alum_2-Pr_300 | 300 | 117‒128 | |
Ni_Alum_2-Pr_150 | 150 | 9‒11 | |
Ni_Alum_2-Pr_82 | 82 | 1 | |
— | 250 | 54‒55 | |
Ni_Alum_1-Pr_250 | 1-PrOH | 250 | 42‒46 |
Ni_Alum_Et_250 | EtOH | 250 | 80‒82 |
Ni_Alum_Et_200 | 200 | 31‒33 | |
Ni_Alum_Et_150 | 150 | 11‒12 | |
Ni_Alum_Me_250 | MeOH | 250 | 94‒97 |
Ni_Alum_2-Pr-Et_250 | 2-PrOH + EtOH | 250 | 72‒80 |
Table 1 Reaction conditions for the transfer hydrogenation of benzofuran.
Sample | Alcohol | Temperature, °C | Pressure, bar |
---|---|---|---|
Ni_Alum_2-Pr_250 | 2-PrOH | 250 | 78‒81 |
Ni_Alum_2-Pr_300 | 300 | 117‒128 | |
Ni_Alum_2-Pr_150 | 150 | 9‒11 | |
Ni_Alum_2-Pr_82 | 82 | 1 | |
— | 250 | 54‒55 | |
Ni_Alum_1-Pr_250 | 1-PrOH | 250 | 42‒46 |
Ni_Alum_Et_250 | EtOH | 250 | 80‒82 |
Ni_Alum_Et_200 | 200 | 31‒33 | |
Ni_Alum_Et_150 | 150 | 11‒12 | |
Ni_Alum_Me_250 | MeOH | 250 | 94‒97 |
Ni_Alum_2-Pr-Et_250 | 2-PrOH + EtOH | 250 | 72‒80 |
Fig. 3. Scheme of the transformations of benzofuran and intermediates over Ni_Alum catalyst (ki are the quasi-first order rate constants). BFN: 2,3-benzofuran; DBFN: 2,3-dihydrobenzofuran; OBFN: octahydrobenzofuran; 2-EPEL: 2-ethylphenol; 2-MPEL: 2-methylphenol; 2-ECHL: 2-ethylcyclohexanol; 2-ECHON: 2-ethylcyclohexanone; 2-MCHL: 2-methylcyclohexanol; 2-MCHON: 2-methylcyclohexanone; ECHN: ethylcyclohexane; MCHN: methylcyclohexane.
Fig. 4. Percentage composition of the reaction mixtures as functions of time. (a) m(Ni_Alum) = 0.42 g, 82 °C, 2-PrOH; (b) m(Ni_Alum) = 0.42 g, 150 °C, 2-PrOH; (c) m(Ni_Alum) = 0.12 g, 250 °C, 2-PrOH; (d) m(Ni_Alum) = 0.12 g, 275 °C, 2-PrOH; (e) m(Ni_Alum) = 0.12 g, 250 °C, 2-PrOH + EtOH. The points are experimental data and the lines are data calculated from the quasi-first order kinetic model.
Fig. 5. Experimental XRD patterns for Ni_Alum catalyst after transfer hydrogenation in 2-PrOH at different temperatures. (a) 82 °C; (b) 150 °C; (c) 250 °C; (d) 300 °C.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_fresh | Ni0 | a = 3.526(1) | 5.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_82 | Ni0 | a = 3.527(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_150 | Ni0 | a = 3.525(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_250 | Ni0 | a = 3.527(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_300 | Ni0 | a = 3.526(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Table 2 XRD data of phase composition and structural features of crystalline phases in the catalyst before and after transfer hydrogenation in 2-PrOH at different temperatures. 2-Pr is 2-propanol, the number is the process temperature.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_fresh | Ni0 | a = 3.526(1) | 5.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_82 | Ni0 | a = 3.527(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_150 | Ni0 | a = 3.525(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_250 | Ni0 | a = 3.527(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr_300 | Ni0 | a = 3.526(1) | 5.5(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Fig. 6. Experimental XRD patterns for Ni_Alum catalyst after transfer hydrogenation at 250 °С in different media. (a) MeOH; (b) EtOH; (c) 1-PrOH; (d) mixture 2-PrOH-EtOH.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Me_250 | Ni0 | a = 3.526(1) | 19.0(5) |
Ni3C | a = b = 4.582(1), c = 12.99(1) | 18.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(2), c = 12.99(2) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_1-Pr_250 | Ni0 | a = 3.524(2) | 16.5(5) |
Ni1-xCx | a = 3.626(3) | 5.0(5) | |
Ni3C | - | - | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr-Et_250 | Ni0 | a = 3.528(3) | 7.0(5) |
Ni1-xCx | a = 3.610(3) | 3.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Table 3 XRD data of phase composition and structural features of crystalline phases in the catalyst after transfer hydrogenation in different primary alcohols and 2-PrOH-EtOH mixture.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Me_250 | Ni0 | a = 3.526(1) | 19.0(5) |
Ni3C | a = b = 4.582(1), c = 12.99(1) | 18.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(2), c = 12.99(2) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_1-Pr_250 | Ni0 | a = 3.524(2) | 16.5(5) |
Ni1-xCx | a = 3.626(3) | 5.0(5) | |
Ni3C | - | - | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_2-Pr-Et_250 | Ni0 | a = 3.528(3) | 7.0(5) |
Ni1-xCx | a = 3.610(3) | 3.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Fig. 7. HRTEM images of Ni_Alum_Me_250 catalyst. (a) sample morphology; (b) crystal structure of Ni3C and Ni0 crystallites; (c) HAADF-STEM image of catalyst; (d) corresponding EDX mapping.
Fig. 8. HRTEM images of Ni_Alum_1-Pr_250 catalyst: (a) sample morphology; (b) crystal structure of Ni3C and Ni1?xCx crystallites; (c) EDX mapping image of the catalyst; (d) particles of different carbides on the Al2O3 surface.
Fig. 10. Experimental XRD patterns for Ni_Alum catalyst after transfer hydrogenation in EtOH at different temperatures. (a) 150 °C; (b) 200 °C; (c) 250 °C.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Et_150 | Ni0 | a = 3.526(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_200 | Ni0 | a = 3.527(3) | 7.5(5) |
Ni1-xCx | a = 3.622(3) | 5.0(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(3), c = 12.99(3) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Table 4 XRD data of phase composition and structural features of crystalline phases in the catalyst after transfer hydrogenation in EtOH at different temperatures.
Sample | Phase | Lattice parameter, Å | DXRD, nm |
---|---|---|---|
Ni_Alum_Et_150 | Ni0 | a = 3.526(1) | 6.0(5) |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_200 | Ni0 | a = 3.527(3) | 7.5(5) |
Ni1-xCx | a = 3.622(3) | 5.0(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) | |
Ni_Alum_Et_250 | Ni0 | a = 3.527(2) | 12.0(5) |
Ni1-xCx | a = 3.628(3) | 4.0(5) | |
Ni3C | a = b = 4.582(3), c = 12.99(3) | 29.5(5) | |
γ-Al2O3 | a = 7.950(3) | 3.0(5) |
Fig. 11. In situ FMR study of the Ni_Alum catalyst evolution in the presence of EtOH. (a) At 250 °C (the pressure during the experiment was in the range of 85?90 atmospheres): (i) 0 min, (ii) 20 min, (iii) 35 min, (iv) 60 min, (v) 90 min, (vi) 110 min and the result of the spectra simulation using the Lorentzian line shape. (b) The integral intensity of the spectrum components as a function on time. (c) The width of the spectra components as a function on time.
|
[1] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[2] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[3] | Xiaoyang Li, Yufei Cao, Jiarong Xiong, Jun Li, Hai Xiao, Xinyang Li, Qingqiang Gou, Jun Ge. Enzyme-metal-single-atom hybrid catalysts for one-pot chemoenzymatic reactions [J]. Chinese Journal of Catalysis, 2023, 44(1): 139-145. |
[4] | Ruiwen Hu, Anjie Gong, Langxing Liao, Yan-Xin Zheng, Xin Liu, Peng Wu, Fushuai Li, Huili Yu, Jing Zhao, Long-Wu Ye, Binju Wang, Aitao Li. Biocatalytic aminohydroxylation of styrenes for efficient synthesis of enantiopure β-amino alcohols [J]. Chinese Journal of Catalysis, 2023, 44(1): 171-178. |
[5] | Guang Gao, Zelun Zhao, Jia Wang, Yongjie Xi, Peng Sun, Fuwei Li. Boosting chiral carboxylic acid hydrogenation by tuning metal-MOx-support interaction in Pt-ReOx/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2034-2044. |
[6] | Yu-Lan Wu, Ming-Yu Qi, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites [J]. Chinese Journal of Catalysis, 2022, 43(7): 1851-1859. |
[7] | Yiqi Ren, Lin Tao, Chunzhi Li, Sanjeevi Jayakumar, He Li, Qihua Yang. Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives [J]. Chinese Journal of Catalysis, 2021, 42(9): 1576-1585. |
[8] | Mengyang Li, Cuibo Liu, Yi Huang, Shuyan Han, Bing Zhang. Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode [J]. Chinese Journal of Catalysis, 2021, 42(11): 1983-1991. |
[9] | Long-Yong Xie, Yi-Shu Liu, Hong-Ru Ding, Shao-Feng Gong, Jia-Xi Tan, Jun-Yi He, Zhong Cao, Wei-Min He. C(sp2)-H/O-H cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with alcohols under visible-light photoredox catalysis [J]. Chinese Journal of Catalysis, 2020, 41(8): 1168-1173. |
[10] | Zhi-Hua Zhou, Xiao Zhang, Yong-Fu Huang, Kai-Hong Chen, Liang-Nian He. Synthesis of α-hydroxy ketones by copper(I)-catalyzed hydration of propargylic alcohols: CO2 as a cocatalyst under atmospheric pressure [J]. Chinese Journal of Catalysis, 2019, 40(9): 1345-1351. |
[11] | Wei Wang, Yan Xie, Shaohua Zhang, Xing Liu, Liyun Zhang, Bingsen Zhang, Masatake Haruta, Jiahui Huang. Highly efficient base-free aerobic oxidation of alcohols over gold nanoparticles supported on ZnO-CuO mixed oxides [J]. Chinese Journal of Catalysis, 2019, 40(12): 1924-1933. |
[12] | Ahmed H. Aboo, Robina Begum, Liangliang Zhao, Zahoor H. Farooqi, Jianliang Xiao. Methanol as hydrogen source: Chemoselective transfer hydrogena-tion of α,β-unsaturated ketones with a rhodacycle [J]. Chinese Journal of Catalysis, 2019, 40(11): 1795-1799. |
[13] | Zan Liu, Xiaolei Nan, Tao Lei, Chao Zhou, Yang Wang, Wenqiang Liu, Bin Chen, Chenho Tung, Lizhu Wu. Photo-induced reductive cross-coupling of aldehydes, ketones and imines with electron-deficient arenes to construct aryl substituted alcohols and amines [J]. Chinese Journal of Catalysis, 2018, 39(3): 487-494. |
[14] | Liandi Wang, Tingting Liu. Ruthenium(Ⅱ) complex catalysts bearing a 2,6-bis(tetrazolyl)pyridine ligand for the transfer hydrogenation of ketones [J]. Chinese Journal of Catalysis, 2018, 39(2): 327-333. |
[15] | Song Song, Dong Wang, Lu Di, Chuanming Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Robust cobalt oxide catalysts for controllable hydrogenation of carboxylic acids to alcohols [J]. Chinese Journal of Catalysis, 2018, 39(2): 250-257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||