Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (9): 1576-1585.DOI: 10.1016/S1872-2067(20)63764-0
• Articles • Previous Articles Next Articles
Yiqi Rena,b, Lin Taoa,b, Chunzhi Lia,b, Sanjeevi Jayakumara, He Lia, Qihua Yanga,*()
Received:
2020-12-18
Accepted:
2021-01-18
Online:
2021-09-18
Published:
2021-05-16
Contact:
Qihua Yang
About author:
* Tel: +86-411-84379552; Fax: +86-411-84694447; E-mail: yangqh@dicp.ac.cnSupported by:
Yiqi Ren, Lin Tao, Chunzhi Li, Sanjeevi Jayakumar, He Li, Qihua Yang. Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives[J]. Chinese Journal of Catalysis, 2021, 42(9): 1576-1585.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63764-0
Fig. 1. FT-IR spectra of imidazole-TsDPEN-N-Boc (a) and SBA-ILBF4-TsDPEN50 (b); (c) 13C NMR spectrum of imidazole-TsDPEN-N-Boc in CDCl3; (d) 13C CP/TOSS NMR spectrum of SBA-ILBF4-TsDPEN50.
Sample | SBET (m2/g) | Dp (nm) | Vp (cm3/g) | S content b (mmol/g) | C content b (mmol/g) | Rh content c (mmol/g) | Weight loss d (wt%) | (CH2)3Br e (wt%) |
---|---|---|---|---|---|---|---|---|
SBA-15 | 713 | 7.5 | 0.82 | — | — | — | — | — |
SBA-ILBF4-TsDPEN20 | 407 (372) | 6.4 (6.4) | 0.64 (0.54) | 0.16 | 6.9 | (0.09) | 17.4 | 8.4 |
SBA-ILBF4-TsDPEN35 | 315 (250) | 6.3 (5.4) | 0.46 (0.37) | 0.35 | 12.2 | (0.21) | 24.7 | 5.7 |
SBA-ILBF4-TsDPEN50 | 311 (252) | 5.4 (5.4) | 0.46 (0.38) | 0.39 | 12.7 | (0.23) | 27.3 | 5.9 |
SBA-TsDPEN25 | 341 (256) | 5.4 (5.5) | 0.47 (0.36) | 0.65 | 14.4 | (0.20) | 25.1 | — |
Table 1 Physicochemical parameters of SBA-15, SBA-ILBF4-TsDPENx and SBA-TsDPEN25 before and after coordination with the Rh complex a.
Sample | SBET (m2/g) | Dp (nm) | Vp (cm3/g) | S content b (mmol/g) | C content b (mmol/g) | Rh content c (mmol/g) | Weight loss d (wt%) | (CH2)3Br e (wt%) |
---|---|---|---|---|---|---|---|---|
SBA-15 | 713 | 7.5 | 0.82 | — | — | — | — | — |
SBA-ILBF4-TsDPEN20 | 407 (372) | 6.4 (6.4) | 0.64 (0.54) | 0.16 | 6.9 | (0.09) | 17.4 | 8.4 |
SBA-ILBF4-TsDPEN35 | 315 (250) | 6.3 (5.4) | 0.46 (0.37) | 0.35 | 12.2 | (0.21) | 24.7 | 5.7 |
SBA-ILBF4-TsDPEN50 | 311 (252) | 5.4 (5.4) | 0.46 (0.38) | 0.39 | 12.7 | (0.23) | 27.3 | 5.9 |
SBA-TsDPEN25 | 341 (256) | 5.4 (5.5) | 0.47 (0.36) | 0.65 | 14.4 | (0.20) | 25.1 | — |
Fig. 2. (a) TGA curves; (b) N2 sorption isotherms (inset is the pore size distribution curves); (c) XRD patterns; (d) TEM image of SBA-ILBF4-TsDPEN50.
Entry | Catalyst | T (h) | Conv. (%) | ee (%) | TOF (h-1) b |
---|---|---|---|---|---|
1 | Cp*Rh-TsDPEN | 12 | 95 | 95 | 75 |
2 | SBA-ILBF4-TsDPEN20-Rh | 12 | 86 | 91 | 92 |
3 | SBA-ILBF4-TsDPEN35-Rh | 12 | 86 | 91 | 63 |
4 | SBA-ILBF4-TsDPEN50-Rh | 12 | 84 | 91 | 63 |
5 | SBA-ILBF4-TsDPEN50-Rh | 2 | 62 | 93 | — |
6 | SBA-ILBF4-TsDPEN50-Rh c | 2 | 62 | 93 | — |
7 | SBA-ILBF4-TsDPEN50-Rh d | 1 | 38 | — | — |
8 | SBA-ILBF4-TsDPEN50-Rh e | 12 | 93 | 92 | — |
9 | SBA-ILBF4-TsDPEN50-Rh f | 12 | 96 | 93 | 93 |
10 | SBA-TsDPEN25-Rh f | 12 | 90 | 92 | 33 |
11 | SBA-TsDPEN20-ILBF4-Rh f | 12 | 90 | 93 | 60 |
Table 2 Quinaldine asymmetric transfer hydrogenation over homogeneous or heterogeneous catalysts a.
Entry | Catalyst | T (h) | Conv. (%) | ee (%) | TOF (h-1) b |
---|---|---|---|---|---|
1 | Cp*Rh-TsDPEN | 12 | 95 | 95 | 75 |
2 | SBA-ILBF4-TsDPEN20-Rh | 12 | 86 | 91 | 92 |
3 | SBA-ILBF4-TsDPEN35-Rh | 12 | 86 | 91 | 63 |
4 | SBA-ILBF4-TsDPEN50-Rh | 12 | 84 | 91 | 63 |
5 | SBA-ILBF4-TsDPEN50-Rh | 2 | 62 | 93 | — |
6 | SBA-ILBF4-TsDPEN50-Rh c | 2 | 62 | 93 | — |
7 | SBA-ILBF4-TsDPEN50-Rh d | 1 | 38 | — | — |
8 | SBA-ILBF4-TsDPEN50-Rh e | 12 | 93 | 92 | — |
9 | SBA-ILBF4-TsDPEN50-Rh f | 12 | 96 | 93 | 93 |
10 | SBA-TsDPEN25-Rh f | 12 | 90 | 92 | 33 |
11 | SBA-TsDPEN20-ILBF4-Rh f | 12 | 90 | 93 | 60 |
Fig. 3. (a) Reaction profiles as a function of reaction time of SBA-ILBF4-TsDPENx-Rh and TsDPEN-Rh in quinaldine ATH (5 μmol Rh, 0.5 mmol quinaldine, 5 mmol HCOONa·2H2O and 5.0 mL of 2 M HOAc-NaOAc buffer with an initial pH of 5, 40 °C). (b) Reaction rate and enantioselectivity of quinaldine ATH with different S/C ratios over SBA-ILBF4-TsDPEN50-Rh (5 mmol HCOONa·2H2O, 5.0 mL of 2 M HOAc-NaOAc buffer with an initial pH of 5, 40 °C, 20 min).
Fig. 4. (a) Reaction solution pH with respect to time during quinaldine ATH catalyzed by SBA-ILBF4-TsDPEN50-Rh or SBA-TsDPEN25-Rh (5 μmol Rh, 0.5 mmol quinaldine, 5 mmol HCOONa·2H2O, and 5.0 mL of 2 M/4 M buffer with pH = 5, 40 °C). (b) Reaction profiles as a function of time for SBA-ILBF4-TsDPEN50-Rh and SBA-TsDPEN25-Rh in quinaldine ATH (5 μmol Rh, 0.5 mmol quinaldine, 5 mmol HCOONa·2H2O, and 5.0 mL of 4 M HOAc-NaOAc buffer with an initial pH of 5, 40 °C) and hot filtration test for the ATH reaction with SBA-ILBF4-TsDPEN50-Rh (red dot = after filtering SBA-ILBF4-TsDPEN50-Rh).
![]() | ||||
---|---|---|---|---|
Entry | R1 | R2 | Conversion b (%) | ee c (%) |
1 | Me | Me | 87 | 94 |
2 d | H | Et | 89 | 90 |
3 d | H | n-Pr | 87 | 90 |
4 d | H | n-Bu | 88 | 90 |
5 d | H | n-Pentyl | 79 | 89 |
6 | F | Me | 80 | 90 |
7 e | Br | Me | 83 | 90 |
Table 3 Asymmetric transfer hydrogenation of substituted quinoline derivatives with SBA-ILBF4-TsDPEN50-Rh a.
![]() | ||||
---|---|---|---|---|
Entry | R1 | R2 | Conversion b (%) | ee c (%) |
1 | Me | Me | 87 | 94 |
2 d | H | Et | 89 | 90 |
3 d | H | n-Pr | 87 | 90 |
4 d | H | n-Bu | 88 | 90 |
5 d | H | n-Pentyl | 79 | 89 |
6 | F | Me | 80 | 90 |
7 e | Br | Me | 83 | 90 |
Fig. 5. Recyclability of SBA-ILBF4-TsDPEN50-Rh in the asymmetric transfer hydrogenation of quinaldine (the reaction times for cycles 1, 2, 3, 4, and 5 are 2, 2, 3, 6, and 12 h, respectively).
|
[1] | Ernest Pahuyo Delmo, Yian Wang, Jing Wang, Shangqian Zhu, Tiehuai Li, Xueping Qin, Yibo Tian, Qinglan Zhao, Juhee Jang, Yinuo Wang, Meng Gu, Lili Zhang, Minhua Shao. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1687-1696. |
[2] | Zixun Yu, Chang Liu, Yeyu Deng, Mohan Li, Fangxin She, Leo Lai, Yuan Chen, Li Wei. Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2022, 43(5): 1238-1246. |
[3] | Bihua Chen, Tong Ding, Xi Deng, Xin Wang, Dawei Zhang, Sanguan Ma, Yongya Zhang, Bing Ni, Guohua Gao. Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions [J]. Chinese Journal of Catalysis, 2021, 42(2): 297-309. |
[4] | Jia Zhao, Saisai Wang, Bolin Wang, Yuxue Yue, Chunxiao Jin, Jinyue Lu, Zheng Fang, Xiangxue Pang, Feng Feng, Lingling Guo, Zhiyan Pan, Xiaonian Li. Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms [J]. Chinese Journal of Catalysis, 2021, 42(2): 334-346. |
[5] | Kai Li, Mengxia Ji, Rong Chen, Qi Jiang, Jiexiang Xia, Huaming Li. Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance [J]. Chinese Journal of Catalysis, 2020, 41(8): 1230-1239. |
[6] | Minghao Li, Fengtian Wu, Yanlong Gu. Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system [J]. Chinese Journal of Catalysis, 2019, 40(8): 1135-1140. |
[7] | Hanxiang Chen, Jie Zeng, Mindong Chen, Zhigang Chen, Mengxia Ji, Junze Zhao, Jiexiang Xia, Huaming Li. Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid [J]. Chinese Journal of Catalysis, 2019, 40(5): 744-754. |
[8] | Chengcheng Yan, Long Lin, Guoxiong Wang, Xinhe Bao. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2019, 40(1): 23-37. |
[9] | Guoqin Wang, Heyuan Song, Ruiyun Li, Zhen Li, Jing Chen. Olefin oligomerization via new and efficient Brönsted acidic ionic liquid catalyst systems [J]. Chinese Journal of Catalysis, 2018, 39(6): 1110-1120. |
[10] | Ye Lu, Yoshinori Yamamoto, Abdulrahman I. Almansour, Natarajan Arumugam, Raju Suresh Kumar, Ming Bao. Unsupported nanoporous palladium-catalyzed chemoselective hydrogenation of quinolines:Heterolytic cleavage of H2 molecule [J]. Chinese Journal of Catalysis, 2018, 39(11): 1746-1752. |
[11] | Henan Li, Yanan Xu, Hansinee Sitinamaluwa, Kimal Wasalathilake, Dilini Galpaya, Cheng Yan. Cu nanoparticles supported on graphitic carbon nitride as an efficient electrocatalyst for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2017, 38(6): 1006-1010. |
[12] | Wei Zhang, Feng Han, Jin Tong, Chungu Xia, Jianhua Liu. Cobalt carbonyl ionic liquids based on the 1,1,3,3-tetra-alkylguanidine cation: Novel, highly efficient, and reusable catalysts for the carbonylation of epoxides [J]. Chinese Journal of Catalysis, 2017, 38(5): 805-812. |
[13] | Heyuan Song, Meirong Kang, Fuxiang Jin, Guoqin Wang, Zhen Li, Jing Chen. Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers [J]. Chinese Journal of Catalysis, 2017, 38(5): 853-861. |
[14] | Cong Zhao, Shengxin Chen, Ruirui Zhang, Zihang Li, Ruixia Liu, Baozeng Ren, Suojiang Zhang. Synthesis of propylene glycol ethers from propylene oxide catalyzed by environmentally friendly ionic liquids [J]. Chinese Journal of Catalysis, 2017, 38(5): 879-889. |
[15] | Wei Sun, Fei Xu, Weiguo Cheng, Jian Sun, Guoqing Ning, Suojiang Zhang. Synthesis of isosorbide-based polycarbonates via melt polycondensation catalyzed by quaternary ammonium ionic liquids [J]. Chinese Journal of Catalysis, 2017, 38(5): 908-917. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||